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INEQUALITIES FOR THE DERIVATIVE OF

POLYNOMIALS WITH RESTRICTED ZEROS

N. A. Rather, Ishfaq Dar∗, and A. Iqbal

Abstract. For a polynomial P(z ) =
∑n
ν=0 aνz ν of degree n having

all its zeros in |z | ≤ k , k ≥ 1 , it was shown by Rather and Dar [13]
that

max
|z|=1

|P ′(z)| ≥ 1

1 + kn

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
max
|z|=1

|P (z)|.

In this paper, we shall obtain some sharp estimates, which not only
refine the above inequality but also generalize some well known
Turán-type inequalities.

1. Introduction and Statement of results

Let Pn denote the class of all algebraic polynomials of the form P (z) =
n∑
j=o

ajz
j of degree n ≥ 1. It was shown by P. Turán [17] that if P ∈ Pn

has all its zeros in |z| ≤ 1, then

max
|z|=1
|P ′(z)| ≥ n

2
max
|z|=1
|P (z)|.(1)

Equality in (1) holds for P (z) = azn + b, |a| = |b| = 1.
As an extension of (1), Govil [8] proved that if P ∈ Pn and P (z) has
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all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1
|P ′(z)| ≥ n

1 + kn
max
|z|=1
|P (z)|.(2)

The result is sharp as shown by the polynomial P (z) = zn + kn.
By involving the minimum modulus of P (z) on |z| = 1, Aziz and

Dawood [2], proved under the hypothesis of inequality (1) that

max
|z|=1
|P ′(z)| ≥ n

2

{
max
|z|=1
|P (z)|+ min

|z|=1
|P (z)|

}
.(3)

Equality in (3) holds for P (z) = azn + b, |a| = |b| = 1.
Dubinin [7] obtained a refinement of (1) by involving some of the

coefficients of polynomial P ∈ Pn in the bound of inequality (1). More
precisely, proved that if all the zeros of the polynomial P ∈ Pn lie in
|z| ≤ 1, then

max
|z|=1
|P ′(z)| ≥ 1

2

(
n+
|an| − |a0|
|an|+ |a0|

)
max
|z|=1
|P (z)|.(4)

Rather and Dar [13] generalized this inequality and proved that if P ∈ Pn
has all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1
|P ′(z)| ≥ 1

1 + kn

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
max
|z|=1
|P (z)|.(5)

The result is sharp and equality holds for P (z) = zn + kn.
In literature, there exist several generalizations and extensions of (1),
(2), (3) and (4) (see [1]- [5], [10], [12]- [16]). In this paper, we are inter-
ested in estimating the lower bound for the maximum modulus of P ′(z)
on |z| = 1 for P ∈ Pn not vanishing in the region |z| > k where k ≥ 1
and establish some refinements and generalizations of the inequalities
(1), (2), (3), (4) and (5). We begin by proving the following refinement
of inequality (5):

Theorem 1.1. If all the zeros of polynomial P ∈ Pn of degree n ≥ 2
lie in |z| ≤ k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≥ 1

1 + kn

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)(
max
|z|=1

|P (z)|+ |an−1|φ(k)

k

)
+ |a1|ψ(k),

(6)
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where φ(k) =
(
kn−1
n
− kn−2−1

n−2

)
or (k−1)2

2
and ψ(k) = (1− 1/k2) or (1−

1/k) according as n > 2 or n = 2.
The result is best possible and equality in (6) holds for P (z) = zn + kn.

Remark 1.2. Since φ(k) and ψ(k) are non-negative, hence it clearly
follows that inequality (6) refines inequality (5). Further for k = 1,
inequality (6) reduces to inequality (4).

Theorem 1.3. If all the zeros of polynomial P ∈ Pn of degree n ≥ 2
lie in |z| ≤ k where k ≥ 1 and m = min|z|=k |P (z)|, then for 0 ≤ l < 1

max
|z|=1
|P ′(z)| ≥ n

1 + kn
(

max
|z|=1
|P (z)|+ lm

)
+ ψ(k)|a1|

+
1

kn(1 + kn)

{(
kn|an| − lm− |a0|
kn|an| − lm+ |a0|

)(
kn max
|z|=1
|P (z)| − lm

)
+ kn−1|an−1|φ(k)

(
n+

kn|an| − lm− |a0|
kn|an| − lm+ |a0|

)}
,

(7)

where φ(k) and ψ(k) are same as defined in Theorem 1.1.

The result is sharp and equality in (7) holds for P (z) = zn + kn.

Remark 1.4. As before, it can be easily seen that Theorem 1.3 is
a refinement of Theorem 1.1. Moreover, for k = 1, we get the following
refinement of inequality (4).

Corollary 1.5. If all the zeros of P ∈ Pn of degree n ≥ 2, lie in
|z| ≤ 1 and m1 = min|z|=1 |P (z)|, then for 0 ≤ l < 1

max
|z|=1

|P ′(z)| ≥ n

2

{
max
|z|=1

|P (z)|+ lm1

}
+

1

2

(
|an| − lm1 − |a0|
|an| − lm1 + |a0|

)(
max
|z|=1

|P (z)| − lm1

)
,

(8)

The result is sharp and equality holds for P (z) = (zn + 1).

2. Lemmas

For the proof of these theorems, we need the following lemmas. The
first Lemma is due to Erdös and Lax [9]

Lemma 2.1. If P ∈ Pn does not vanish in |z| < 1, then

max
|z|=1
|P ′(z)| ≤ n

2
max
|z|=1
|P (z)|.(9)
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Next Lemma is a special case of a result due to Aziz and Rather [3,4].

Lemma 2.2. If P ∈ Pn and P (z) has its all zeros in |z| ≤ 1 and

Q(z) = znP
(
1/z
)
, then for |z| = 1,

|Q′(z)| ≤ |P ′(z)|.

The following result is due to Frappier, Rahman and Ruscheweyh [6].

Lemma 2.3. If P ∈ Pn is a polynomial of degree n ≥ 1, then for
R ≥ 1,

max
|z|=R

|P (z)| ≤ Rn max
|z|=1
|P (z)| − (Rn −Rn−2)|P (0)| if n > 1(10)

and

max
|z|=R

|P (z)| ≤ Rmax
|z|=1
|P (z)| − (R− 1)|P (0)| if n = 1.(11)

From above lemma, we deduce:

Lemma 2.4. If P ∈ Pn = an
∏n

j=1(z − zj) is a polynomial of degree

n ≥ 2 having no zeros in |z| < 1, then for every α ∈ C with |α| ≤ 1 and
R ≥ 1,

max
|z|=R

|P (z)| ≤ Rn + 1

2
max
|z|=1
|P (z)| − |α|R

n − 1

2
min
|z|=1
|P (z)|

−
(
Rn − 1

n
− Rn−2 − 1

n− 2

)
|P ′(0)| if n > 2

(12)

and

max
|z|=R

|P (z)| ≤ R2 + 1

2
max
|z|=1
|P (z)| − |α|R

2 − 1

2
min
|z|=1
|P (z)|

− (R− 1)2

2
|P ′(0)| if n = 2.

(13)

Proof of Lemma 2.4. By hypothesis all the zeros of P (z) lie in
|z| ≥ 1. Let m = min|z|=1 |P (z)|, then m ≤ |P (z)| for |z| = 1. Applying
Rouche’s theorem, it follows that the polynomial G(z) = P (z) + αmzn

has all its zeros in |z| ≥ 1 for every α with |α| < 1 (this is trivially true
for m = 0.) Now for each θ, 0 ≤ θ < 2π, we have

G(Reiθ)−G(eiθ) =

∫ R

1

eiθG′(teiθ)dt.(14)
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This gives with the help of (10) of Lemma 2.3 and Lemma 2.1 for n > 2,∣∣G(Reiθ)−G(eiθ)
∣∣

≤
∫ R

1

|G′(teiθ)|dt

≤ n

2

(∫ R

1

tn−1dt

)
max
|z|=1
|G(z)| −

∫ R

1

(
tn−1 − tn−3

)
dt|G′(0)|

=
Rn − 1

2
max
|z|=1
|G(z)| −

(
Rn − 1

n
− Rn−2 − 1

n− 2

)
|P ′(0)|,

so that for n > 2 and 0 ≤ θ < 2π, we have∣∣G(Reiθ)
∣∣ ≤ ∣∣G(Reiθ)−G(eiθ)

∣∣+
∣∣G(eiθ)

∣∣
=
Rn + 1

2
max
|z|=1
|G(z)| −

(
Rn − 1

n
− Rn−2 − 1

n− 2

)
|P ′(0)|.

Replacing G(z) by P (z) + αmzn, we get for |z| = 1,

|P (Rz) + αmRnzn|

≤ Rn + 1

2
max
|z|=1
|P (z) + αmzn| −

(
Rn − 1

n
− Rn−2 − 1

n− 2

)
|P ′(0)|.

(15)

Choosing argument of α in the left hand side of (15) suitably, we obtain
for n > 2 and |z| = 1,

|P (Rz)|+ |α|mRn

≤ Rn + 1

2

{
max
|z|=1
|P (z)|+ |α|m

}
−
(
Rn − 1

n
− Rn−2 − 1

n− 2

)
|P ′(0)|,

equivalently for n > 2, |α| < 1 and |z| = 1, we have

|P (Rz)| ≤R
n + 1

2
max
|z|=1
|P (z)| − |α|R

n − 1

2
min
|z|=1
|P (z)|

−
(
Rn − 1

n
− Rn−2 − 1

n− 2

)
|P ′(0)|,

which proves inequality (12) for n > 2 and |α| < 1. Similarly we can
prove inequality (13) for n = 2 by using (11) of Lemma 2.3 instead of
(10). For |α| = 1, the result follows by continuity. This completes the
proof of Lemma 2.4.

Finally we also need the Lemma due to Osserman [11], known as bound-
ary Schwarz lemma.
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Lemma 2.5. If
(a) f(z) is analytic for |z| < 1,
(b) |f(z)| < 1 for |z| < 1,
(c) f(0) = 0,
(d) for some b with |b| = 1, f(z) extends continuously to b,

|f(b)| = 1 and f ′(b) exists.
Then

|f ′(b)| ≥ 2

1 + |f ′(0)|
.(16)

3. Proof of the Theorems

Proof of Theorem 1.1. Let g(z) = P (kz). Since all the zeros of
P (z) = an

∏n
j=1(z − zj) lie in |z| ≤ k where k ≥ 1, g(z) has all its

zeros in |z| ≤ 1 and hence all the zeros of the conjugate polynomial

g∗(z) = zng(1/z̄) lie in |z| ≥ 1.
Therefore, the function

F (z) =
g(z)

zn−1g(1/z)
= z

an
ān

n∏
j=1

(
kz − zj
k − zz̄j

)
(17)

is analytic in |z| < 1 with F (0) = 0 and |F (z)| = 1 for |z| = 1. Further
for |z| = 1, this gives

zF ′(z)

F (z)
= 1− n+

zg′(z)

g(z)
+

(
zg′(z)

g(z)

)
so that

Re

(
zF ′(z)

F (z)

)
= 1− n+ 2Re

(
zg′(z)

g(z)

)
.(18)

Also, we have from (17)

zF ′(z)

F (z)
= 1 +

n∑
j=1

(
k2 − |zj|2

|kz − zj|2

)
> 0 for |z| = 1,

as such,

zF ′(z)

F (z)
=

∣∣∣∣zF ′(z)

F (z)

∣∣∣∣ = |F ′(z)| for |z| = 1.
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Using this fact in (18), we get for points z on |z| = 1 with g(z) 6= 0,

1− n+ 2Re

(
zg′(z)

g(z)

)
= |F ′(z)|.(19)

Applying lemma 2.5 to F (z), we obtain for all points z on |z| = 1 with
g(z) 6= 0,

1− n+ 2Re

(
zg′(z)

g(z)

)
≥ 2

1 + |F ′(0)|
,

that is, for |z| = 1 with g(z) 6= 0,

Re

(
zg′(z)

g(z)

)
≥ 1

2

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
.

This implies∣∣∣∣zg′(z)

g(z)

∣∣∣∣ ≥ 1

2

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
for |z| = 1, g(z) 6= 0,

and hence,

|g′(z)| ≥ 1

2

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
|g(z)| for |z| = 1.(20)

Replacing g(z) by P (kz), we get for |z| = 1,

k|P ′(kz)| ≥ 1

2

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
|P (kz)|,

or equivalently,

2kmax
|z|=k
|P ′(z)| ≥

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
max
|z|=k
|P (z)|.(21)

Since P ′(z) is a polynomial of degree n− 1, by (10) of Lemma 2.3 with
R = k ≥ 1, we have

kn−1 max
|z|=1
|P ′(z)| − (kn−1 − kn−3)|a1| ≥ max

|z|=k
|P ′(z)|, if n > 2.

Combining this inequality with (21), we get for n > 2,

2kn max
|z|=1
|P ′(z)| − 2(kn − kn−2)|a1| ≥

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
max
|z|=k
|P (z)|.

(22)
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Since all the zeros of polynomial g∗(z) = zng(1/z̄) = znP (k/z̄) lie in
|z| ≥ 1, applying (12) of Lemma 2.4 with R = k ≥ 1 and α = 0 to the
polynomial g∗(z),we get

max
|z|=k
|g∗(z)| ≤ kn + 1

2
max
|z|=1
|g∗(z)| − |an−1|

k

(
kn − 1

n
− kn−2 − 1

n− 2

)
if n > 2.

That is,

kn max
|z|=1
|P (z)| ≤ kn + 1

2
max
|z|=k
|P (z)| − |an−1|kn−1

(
kn − 1

n
− kn−2 − 1

n− 2

)
if n > 2,

or equivalently, we have for n > 2,

max
|z|=k
|P (z)| ≥ 2kn

kn + 1
max
|z|=1
|P (z)|+ 2kn−1|an−1|

kn + 1

(
kn − 1

n
− kn−2 − 1

n− 2

)
.

Using above inequality in (22), we get for n > 2,

2kn max
|z|=1

|P ′(z)| − 2(kn − kn−2)|a1| ≥
2kn

1 + kn

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
max
|z|=1

|P (z)|

+
2kn−1|an−1|

1 + kn

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)(
kn − 1

n
− kn−2 − 1

n− 2

)
,

consequently,

max
|z|=1
|P ′(z)| ≥ 1

1 + kn

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
max
|z|=1
|P (z)|+ (1− 1/k2)|a1|

+
|an−1|

k(1 + kn)

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)(
kn − 1

n
− kn−2 − 1

n− 2

)
,

if n > 2,

which proves inequality (6) for the case n > 1. For the case n = 2, the
result follows on similar lines in view of part second of Lemma 2.3 and
Lemma 2.4 with α = 0. This completes the proof of Theorem 1.1.

Proof of Theorem 1.3. By hypothesis P ∈ Pn and P (z) has all its
zeros in |z| ≤ k, k ≥ 1. If P (z) has a zero on |z| = k, then m = 0 and the
result follows by Theorem 1.1. Henceforth, we assume that all the zeros
of P (z) lie in |z| < k, so that m > 0. Hence all the zeros of h(z) = P (kz)
lie in disk |z| < 1 and m = min|z|=k |P (z)| = min|z|=1 |h(z)|. Therefore,
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we have m ≤ |h(z)| for |z| = 1. This implies for every λ ∈ C with |λ| < 1
that

m|λzn| < |h(z)| for |z| = 1.

Applying Rouche’s theorem, it follows that all the zeros of the polyno-
mial H(z) = h(z)+λmzn lie in |z| < 1 for every λ ∈ C with |λ| < 1. Now
proceeding similarly as in the proof of Theorem 1.1 (with g(z) replacing
by H(z)), we obtain from (20)

|H ′(z)| ≥ 1

2

(
n+
|knan + λm| − |a0|
|knan + λm|+ |a0|

)
|H(z)| for |z| = 1.(23)

Using the fact that the function t(x) = x−|a|
x+|a| is non-decreasing function

of x and |knan + λm| ≥ kn|an| − |λm|, we get for every λ ∈ C with
|λ| < 1 and |z| = 1,

|H ′(z)| ≥ 1

2

(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
|H(z)|.(24)

Equivalently for |z| = 1 and |λ| < 1,

|h′(z) + nmλzn−1| ≥ 1

2

(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
(|h(z)| −m|λ|).

(25)

Since all the zeros of H(z) = h(z) +λmzn lie in |z| < 1, by Guass Lucas
theorem it follows that all the zeros of H ′(z) = h′(z) + λnmzn−1 lie in
|z| < 1 for every λ ∈ C with |λ| < 1. This implies

|h′(z)| ≥ nm|z|n for |z| ≥ 1.(26)

Choosing argument of λ in the left hand side of (25) such that

|h′(z) + nmλzn−1| = |h′(z)| − nm|λ| for |z| = 1,

which is possible by (26), we get

|h′(z)| − nm|λ| ≥ 1

2

(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
(|h(z)| −m|λ|),

that is,

|h′(z)| ≥ 1

2

(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
|h(z)|+ 1

2

(
n− kn|an| − |λm| − |a0|

kn|an| − |λm|+ |a0|

)
|λ|m.
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Replacing h(z) by P (kz), we get

kmax
|z|=k
|P ′(z)| ≥1

2

(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
max
|z|=k
|P (z)|

+
1

2

(
n− kn|an| − |λm| − |a0|

kn|an| − |λm|+ |a0|

)
|λ|m.

(27)

Again as before, using (10) of Lemma 2.3 and (12) of lemma 2.4, we
obtain for 0 ≤ l < 1 and n > 2,

kn max
|z|=1

|P ′(z)| − (kn − kn−2)|a1|

≥ 1

2

(
n+

kn|an| − lm− |a0|
kn|an| − lm+ |a0|

){
2kn

1 + kn
max
|z|=1

|P (z)|+ l

(
kn − 1

kn + 1

)
min
|z|=k

|P (z)|

+
2kn−1|an−1|
kn + 1

(
kn − 1

n
− kn−2 − 1

n− 2

)}
+

1

2

(
n− kn|an| − lm− |a0|

kn|an| − lm+ |a0|

)
lm,

which on simplification yields for 0 ≤ l < 1 and n > 2,

max
|z|=1

|P ′(z)|

≥ n

1 + kn

(
max
|z|=1

|P (z)|+ lm

)
+

n|an−1|
k(1 + kn)

(
kn − 1

n
− kn−2 − 1

n− 2

)
+ (1− 1/k2)|a1|+

(
kn|an| − lm− |a0|
kn|an| − lm+ |a0|

){
1

kn(1 + kn)

(
kn max
|z|=1

|P (z)| − lm
)

+
|an−1|

k(1 + kn)

(
kn − 1

n
− kn−2 − 1

n− 2

)}
.

The above inequality is equivalent to the inequality (7) for n > 2. For
n = 2, the result follows on the similar lines by using inequality (11)
of Lemma 2.3 and inequality (13) of Lemma 2.4 in the inequality (27).
This proves Theorem 1.3.

4. Concluding Remark

If we use Lemma 2.3 and Lemma 2.4 with |α| = 1 in the proof of
Theorem 1.1, we get the following refinement of inequalities (2) and (6).
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Theorem 4.1. If P ∈ Pn has all its zeros in |z| ≤ k where k ≥ 1,
then

max
|z|=1
|P ′(z)| ≥ 1

1 + kn

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)(
max
|z|=1
|P (z)|+ kn − 1

2kn
min
|z|=k
|P (z)|

+
|an−1|
k

φ(k)

)
+ |a1|ψ(k)

(28)

where ψ(k) = (1− 1/k2) or (1− 1/k) according as n > 2 or n = 2.
The result is sharp and equality in (28) holds for P (z) = zn + kn.
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