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INEQUALITIES FOR THE DERIVATIVE OF
POLYNOMIALS WITH RESTRICTED ZEROS

N. A. RATHER, ISHFAQ DAR*, AND A. IQBAL

ABSTRACT. For a polynomial P(z) = Y.._, a,z" of degree n having
all its zeros in |z| < k, k > 1, it was shown by Rather and Dar [13]
that

1 k”|an| — a0|>
max |P'(2)| > n + max |P(z)|.
max P/ > g (0 e ey ) P

In this paper, we shall obtain some sharp estimates, which not only

refine the above inequality but also generalize some well known
Turan-type inequalities.

1. Introduction and Statement of results

Let P,, denote the class of all algebraic polynomials of the form P(z) =
>~ a;2? of degree n > 1. It was shown by P. Turdn [17] that if P € P,

j=o
has all its zeros in |z| < 1, then
(1) max |P'(2)| > = max|P(2)].
|z|=1 2 |z|=1
Equality in (1) holds for P(z) = az" + b, |a| = |b| = 1.
As an extension of (1), Govil [8] proved that if P € P, and P(z) has
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all its zeros in |z| < k,k > 1, then

(2) max | P'(z)] > "

max | P(z)].
|z|=1 14+ k™ |z1=1 |P(2)]

The result is sharp as shown by the polynomial P(z) = 2" + k™.
By involving the minimum modulus of P(z) on |z| = 1, Aziz and
Dawood [2], proved under the hypothesis of inequality (1) that

®) x| P2} 2 § {nax (2] -+ min P2 |
Equality in (3) holds for P(z) = az™ + b, |a| = |b] = 1.

Dubinin [7] obtained a refinement of (1) by involving some of the
coefficients of polynomial P € P, in the bound of inequality (1). More
precisely, proved that if all the zeros of the polynomial P € P, lie in
|z| <1, then

1 ’anl - ‘aO‘)
4 max | P'(z >—(n+— max |P(2)].

Rather and Dar [13] generalized this inequality and proved that if P € P,
has all its zeros in |z| < k,k > 1, then

: 1 k™[an| — lao|

(5) I|£1|1>1<|P(z)] > T <n+ knlan|+|a0|>max|P(z)].

The result is sharp and equality holds for P(z) = 2" + k™.

In literature, there exist several generalizations and extensions of (1),
(2), (3) and (4) (see [1]- [5], [10], [12]- [16]). In this paper, we are inter-
ested in estimating the lower bound for the maximum modulus of P’(z)
on |z| = 1 for P € P, not vanishing in the region |z| > k where k > 1
and establish some refinements and generalizations of the inequalities
(1), (2), (3), (4) and (5). We begin by proving the following refinement
of inequality (5):

THEOREM 1.1. If all the zeros of polynomial P € P, of degree n > 2
lie in |z| < k,k > 1, then

©)
x| P61 2 1 (0 e ) (s P+ 2 e,

|2|=1 knlan| + |aol J \ |z1=1
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n n—2 2

where ¢(k) = (kn_l - kn_2_1> or E=1° and (k)= (1-1/k*) or (1 —

1/k) according as n > 2 or n = 2.
The result is best possible and equality in (6) holds for P(z) = z" + k™.

REMARK 1.2. Since ¢(k) and (k) are non-negative, hence it clearly
follows that inequality (6) refines inequality (5). Further for & = 1,
inequality (6) reduces to inequality (4).

THEOREM 1.3. If all the zeros of polynomial P € P, of degree n > 2
lie in |z| < k where k > 1 and m = minj;|—, |P(2)|, then for 0 <1 <1

(7)

max |P'(z)] > 1+kn(glg>l<\P(Z)| +1m) + (k)|ai]

1 E™an,| — Im — |ag|
k™ P —1

R aualo) (o4 e =)

k™ an| — Im + |ag|
where ¢(k) and (k) are same as defined in Theorem 1.1.
The result is sharp and equality in (7) holds for P(z) = 2" + k™.

REMARK 1.4. As before, it can be easily seen that Theorem 1.3 is
a refinement of Theorem 1.1. Moreover, for £ = 1, we get the following
refinement of inequality (4).

COROLLARY 1.5. If all the zeros of P € P, of degree n > 2, lie in
|z] <1 and my = min,j— |P(2)|, then for 0 <[ <1

(®)

n 1/ |an| —Imy — |ag]
P > — P +1 —l—( P —1 ,
s P22 s PO+ g (200 ) G (0]~ )

The result is sharp and equality holds for P(z) = (2™ + 1).

2. Lemmas

For the proof of these theorems, we need the following lemmas. The
first Lemma is due to Erdés and Lax [9]

LEMMA 2.1. If P € P, does not vanish in |z| < 1, then
9) max |P'(2)| < gmax 1P(2)].
=1

|21=1 |z
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Next Lemma is a special case of a result due to Aziz and Rather [3,4].

LEMMA 2.2. If P € P, and P(z) has its all zeros in [z| < 1 and
Q(z) = 2"P(1/z), then for || =1,
1Q'(2)] < |P'(2)].
The following result is due to Frappier, Rahman and Ruscheweyh [6].
LEMMA 2.3. If P € P, is a polynomial of degree n > 1, then for
R>1,

(10) max |P(z)| < R"max |P(z)| — (R" — R"?)|P(0)| if n>1

|z|=R |z|=1
and

(1) max|P()| < Rmax|P(z)] = (R = DIPO)] if n=

From above lemma, we deduce:
LEMMA 2.4. If P € P, = a,[[;_,(z — 2;) is a polynomial of degree

n > 2 having no zeros in |z| < 1, then for every o € C with |a| < 1 and
R>1,

(12)
R"+1 R"—1
max |P(z)| < max |P(z2)| — |« min |P(z
max [P(2)] < 5 max [P = lal 5 min PG2)
R"—1 R"2-1
— — P’ if 2
(P - rol i as
and
R*+1 R*—1
max |P(z)| < i max |P(z)| — |«] min |P(z)|
(13) |z|=R 2 |z|=1 2 |z=1
(R—1)

Proof of Lemma 2.4. By hypothesis all the zeros of P(z) lie in
|z] > 1. Let m = min,—; |P(2)|, then m < |P(z)| for |2| = 1. Applying
Rouche’s theorem, it follows that the polynomial G(z) = P(z) + amz"
has all its zeros in |z| > 1 for every o with |« < 1 (this is trivially true
for m = 0.) Now for each 6, 0 < 6 < 27, we have

(14) G(Re™) — G(e) = /1 " G (e
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This gives with the help of (10) of Lemma 2.3 and Lemma 2.1 for n > 2,
‘G(Reie) — G(eie)‘

R .
< [ 1eeena
nl R R
<7 ( / t”‘ldt> max|G(2)| — / (£ — 73 dt|G(0)
1 1

|z1=1

R —1 R -1 R"2-1\,,
_ max|G<z>|—( - )|P<o>|,

2 |z|=1 n n—2
so that for n > 2 and 0 < 0 < 27, we have
!G(Rei9)| < !G(Reie) — G(e")| + |G(ei0)|

R 41 R-1 R72o1\
= max |G(z)] — ( - ) [P'(0)].

2 |z|]=1 n n—2
Replacing G(z) by P(z) + amz"™, we get for |z| = 1,
|P(Rz) + amR"2"|
(15) R +1 . R*—1 R"2-1
|- - | P'(0)].

< P
< T?Ii)l(\ (2) + amz - —

Choosing argument of « in the left hand side of (15) suitably, we obtain
for n > 2 and |2| =1,

|P(R2)| + |a|mR"
n 1 no_ 1 n—2 _ |
< T max P +lalm | - (T - 2 ) 1P o)
n

|z]=1 n—2

equivalently for n > 2, |a| < 1 and |z| = 1, we have

"+ 1 "—1
IP(R2)] <7 max | P(2)| — o~ — min| P(2)
R"—1 R"?-1
— — P’

(F -2 ) o

which proves inequality (12) for n > 2 and || < 1. Similarly we can
prove inequality (13) for n = 2 by using (11) of Lemma 2.3 instead of
(10). For |a| = 1, the result follows by continuity. This completes the
proof of Lemma 2.4. O

Finally we also need the Lemma due to Osserman [11], known as bound-
ary Schwarz lemma.
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LEMMA 2.5. If
(a) f(2) is analytic for |z| < 1,
(b)) <1 for|2] <1,
(c)  f(0)=0,
(d) for some b with |b| = 1, f(z) extends continuously to b,
|f(b)] =1 and f'(b) exists.
Then

, 2
(16) Lf'(b)] = IESTZON

3. Proof of the Theorems

Proof of Theorem 1.1. Let g(z) = P(kz). Since all the zeros of
P(z) = a,[[j_,(z — 2) lie in |z| < k where k > 1, g(2) has all its
zeros in |z| < 1 and hence all the zeros of the conjugate polynomial
9" (z) = 2"g(1/2) lie in |z| > 1.

Therefore, the function

__ 9 ek
(17) F(z) = =1g(1/7) an H (k - ZZ_J)

is analytic in |z| < 1 with F(0) = 0 and |F(z)| = 1 for |z| = 1. Further
for |z| = 1, this gives

2F'(2)
7)

=1-n +

F(z)
so that

3+ (55)
(18) (ZF )—1—n+2Re(
(1

7)

Also, we have from

n

F/ 2
: :1—|— |ZJ| > 0 for |z| =1,
|]€Z
7j=1
as such,
zF'(z)  |zF'(2)
o= S IF@L e e
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Using this fact in (18), we get for points z on |z| = 1 with g(z) # 0,

(19) 1—n+2Re(Z‘5(IS>) = |F'(2)].

Applying lemma 2.5 to F(z), we obtain for all points z on |z| = 1 with

g(z) #0,
. (29(2) 2
! *”%<mw>21+www

that is, for |z| = 1 with g(z) # 0,

zg’(Z)) 1 ( k" an| — !%I)
Rel ———= | >=-[n+—F—7F7—"F7).
( 9(2) 2 k™ an| + lao

This implies

e 1( www—ma)
> —-|ln+ — for |z| =1, g(2) # 0,
0 |~ 2\ e, T Jao =1 g(e) #
and hence,
1 k™| an| — |aol
2 ! > — _ f = 1.
@)z g (n e e

Replacing g(z) by P(kz), we get for |z| =1,

1 k"™|a,| — lao|
E|P (k)| > = — | |P(k
P 2 5 (et e e ) 1P
or equivalently,
k*a,| — \GO\)
21 2kmax |P ()| > (n+ ————— | max |P(2)].
1) nax [P(2)] 2 (04 20 ) max | PGe)

Since P’(z) is a polynomial of degree n — 1, by (10) of Lemma 2.3 with
R=Fk >1, we have

ket ﬁax |P'(2)] — ("' — k") |ay| > {n‘ai: |P'(2)], it n>2.
z|=1 zZ|l=

Combining this inequality with (21), we get for n > 2,
(22)
k" an| — faol

2k" P'(2)] = 2(k" = k" ?)]as| > (n +
ma P(2)] =20 = ko] > (e

|2|=1

) max PG
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Since all the zeros of polynomial ¢g*(z) = 2"g(1/z) = 2"P(k/z) lie in
|z| > 1, applying (12) of Lemma 2.4 with R = k > 1 and o = 0 to the
polynomial ¢g*(z),we get

k" 41 lans| (k" =1 k" 2—1
* < * _ —
ggm (2)] < 5 g1|2>1c|g ()] ’ - —

if n>2.
That is,

41 R
k" max | P(2)] < = max | P(2)] — ay_y [k"" _
|z|=1 2 |z=k n n—2

if n>2,

or equivalently, we have for n > 2,

QL 2kn—1|an_1| kr —1 /{;TL—Q —1
P(2)| > P B '
e e s

Using above inequality in (22), we get for n > 2,

2k™ E™an| — \a()])
+7 max P V4
< k™|an| + [aol |z\:1‘ 2

2k" max |P'(2)] — 2(k"™ — k"™ %)|ay| >

|z]=1 1+ km
+2k‘”_1|an,1| - k™ an| — |aol k" -1 k=2 -1 7
1+kn k™ an| + |aol n n—2

consequently,

/{;"‘an| |a0|
P > " ) max|P +(1—-1 ) a
glla)l(‘ (2>’ = 14 kn (n k”]anl ’;0’ = ‘ (Z)’ ( / )| 1’

N |an, 1] - k"™|a,| — lao| k" =1 k2 —1
k(1+ km) k™ an| + |aol n n—2 )’

if n>2,

which proves inequality (6) for the case n > 1. For the case n = 2, the
result follows on similar lines in view of part second of Lemma 2.3 and
Lemma 2.4 with a« = 0. This completes the proof of Theorem 1.1. [

Proof of Theorem 1.3. By hypothesis P € P,, and P(z) has all its
zeros in |z| < k,k > 1. If P(z) has a zero on |z| = k, then m = 0 and the
result follows by Theorem 1.1. Henceforth, we assume that all the zeros
of P(z) liein |z| < k, so that m > 0. Hence all the zeros of h(z) = P(kz)
lie in disk |2| < 1 and m = min.j— |P(2)| = min.j—; |h(z)|. Therefore,
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we have m < |h(z)| for |z| = 1. This implies for every A € C with [A\| < 1
that

miNz"| < |h(z)] for |z| =1.

Applying Rouche’s theorem, it follows that all the zeros of the polyno-
mial H(z) = h(z)+Amz" liein |z| < 1 for every A € C with |A\| < 1. Now
proceeding similarly as in the proof of Theorem 1.1 (with g(z) replacing
by H(z)), we obtain from (20)

( |k"a, + Am| — |aol

1
23) |H'(2)| > 5
@3) @2 5\ Tl + Jaol

)|H(z)| for |z] = 1.

Using the fact that the function ¢(z) = i;—m is non-decreasing function

of x and |k™a, + dm| > k"|a,| — |Am|, we get for every A € C with
Al < 1and |z] =1,

(24) (2| > 1(n+ Elan| = |xm| "“’) H(2).

2 k™ an| — | Am| + |ao|

Equivalently for |z] = 1 and |\| < 1,
(25)
1
|R'(2) + nmAz" "1 > 3 (n +

k| a,| — [Am| — |aol
k™ a,| — | Am| + |ao]

><|h<z>| ).

Since all the zeros of H(z) = h(z) 4+ Amz" lie in |z| < 1, by Guass Lucas
theorem it follows that all the zeros of H'(z) = I/(2) + Anmz""! lie in
|z| <1 for every A € C with |[A| < 1. This implies

(26) |W(2)] > nm|z|"  for |z| > 1.

Choosing argument of A in the left hand side of (25) such that
W (2) + nmA2""Y = B/ (2)| — nm]| )| for |z| =1,

which is possible by (26), we get

k*a,| — [Am| — |aol
k™|a,| — | Am| + |ao|

1
H(2)] = nmlA| > Q(n
that is,

1 k™|an| — |Am| — |ao] 1 k™ an| — |Am| — |aol
!/
> - “(n- .
@) 2 2(“* wlan] — ]+ Jaol )T 2\ T B = 1 Jaof )

)<|h<z>| A,
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Replacing h(z) by P(kz), we get

1 k" a,| — | Am| — |a0|)
kmax | P’ >_ < + max P
|2|= k| (@)l k™|a,| — [Am| + |ao] IP=)]

1 E™|an| — [Am| — |ag|
“(n-— A
*2(” k™ an| — [Am| + o] [Afm

(27)

Again as before, using (10) of Lemma 2.3 and (12) of lemma 2.4, we
obtain for 0 <[ < 1 and n > 2,

k" max [P(2)] = (K~ K|

Zi(n—f—k |an|—lm—|a0|>{ 2k maX\P( ) +1 <k )m1n|P( )|

k™ an| —Im+ lag] ) |14+ k™ |2 k" +1) |2|=k
n 2k" Yap_1| (k" —1 B | n 1 . k™ an| — Im — |ag] Im
k" +1 n n—2 2 k™|an| — lm + |ao| ’

which on simplification yields for 0 <1 < 1 and n > 2,

Im‘a);\P( z)|

n nlan,_1| (k" —1 k" 2-1
> P l —
T 14k (T]zm}l{| ()|+m>+k‘(1+k‘")< n n—2

k™ an| — Im — |ag| 1
1—1/k? k" P(2)| -1
-y )|a1+<k”|an|lm+|ao| ) 7y Pl = im

N lana| (K" =1 k"2 -1

k(1 + En) n n—2 '
The above inequality is equivalent to the inequality (7) for n > 2. For
n = 2, the result follows on the similar lines by using inequality (11)

of Lemma 2.3 and inequality (13) of Lemma 2.4 in the inequality (27).
This proves Theorem 1.3. O

4. Concluding Remark

If we use Lemma 2.3 and Lemma 2.4 with || = 1 in the proof of
Theorem 1.1, we get the following refinement of inequalities (2) and (6).
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THEOREM 4.1. If P € P,, has all its zeros in |z| < k where k > 1,
then

(28)
1 k™ an| — |aol E"—1 .
P()] > ©lan] — ldol P P
e P02 1 (o4 e ) (s P60+ S min o
Uy
#2lom) + oo

where (k) = (1 — 1/k?) or (1 —1/k) according as n > 2 or n = 2.
The result is sharp and equality in (28) holds for P(z) = 2" + k™.
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