• 제목/요약/키워드: MEMS packaging

검색결과 99건 처리시간 0.019초

Package-Platformed Linear/Circular Polarization Reconfigurable Antenna Using an Integrated Silicon RF MEMS Switch

  • Hyeon, Ik-Jae;Jung, Tony J.;Lim, Sung-Joon;Baek, Chang-Wook
    • ETRI Journal
    • /
    • 제33권5호
    • /
    • pp.802-805
    • /
    • 2011
  • This letter presents a K-band polarization reconfigurable antenna integrated with a silicon radio frequency MEMS switch into the form of a compact package. The proposed antenna can change its state from linear polarization (LP) to circular polarization (CP) by actuating the MEMS switch, which controls the configuration of the coupling ring slot. Low-loss quartz is used for a radiating patch substrate and at the same time for a packaging lid by stacking it onto the MEMS substrate, which can increase the system integrity. The fabricated antenna shows broadband impedance matching and exhibits high axial ratios better than 15 dB in the LP and small axial ratios in the CP, with a minimum value of 0.002 dB at 20.8 GHz in the K-band.

초고추파 집적 회로를 위한 새로운 실리콘 MEMS 패키지 (THe Novel Silicon MEMS Package for MMICS)

  • 권영수;이해영;박재영;김성아
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권6호
    • /
    • pp.271-277
    • /
    • 2002
  • In this paper, a MEMS silicon package is newly designed, fabricated for HMIC, and characterized for microwave and millimeter-wave device applications. The proposed package is fabricated by using two high resistivity silicon substrates and surface/bulk micromachining technology. It has a good performance characteristic such as -20㏈ of $S_11$/ and -0.3㏈ of $S_21$ up to 20㎓, which is useful in microwave region. It has also better heat transfer characteristics than the commonly used ceramic package. Since the proposed silicon MEMS package is easy to fabricate and wafer level chip scale packaging is also possible, the production cost can be much lower than the ceramic package. Since it will be a promising low-cost package for mobile/wireless applications.

MEMS 기반 안전 소자에 대한 액정 폴리머 패키지의 밀폐도 연구 (Investigation on Hermeticity of Liquid Crystal Polymer Package for MEMS Based Safety Device)

  • 최진일;김용국;주병권
    • 센서학회지
    • /
    • 제24권5호
    • /
    • pp.287-290
    • /
    • 2015
  • Liquid crystal polymer (LCP) is a thermoplastic polymer with superior mechanical and thermal properties. In addition, its characteristics include very low water absorption rate and possibility to apply bonding process under low temperature. In this study, LCP is utilized as a packaging material for a microelectronic system (MEMS) based safety device with suggestion of a low temperature packaging process. Highly sensitive and stable capacitive type humidity sensor is fabricated to investigate hermeticity of the packaged MEMS device.

Hermetic Packaging For MEMS

  • 강석진
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2003년도 국제표면실장 및 인쇄회로기판 생산기자재전:전자패키지기술세미나
    • /
    • pp.115-134
    • /
    • 2003
  • PDF

SiOG 공정을 이용한 고 신뢰성 MEMS 자이로스코프 (A High Yield Rate MEMS Gyroscope with a Packaged SiOG Process)

  • 이문철;강석진;정규동;좌성훈;조용철
    • 마이크로전자및패키징학회지
    • /
    • 제12권3호
    • /
    • pp.187-196
    • /
    • 2005
  • MEMS에서 제조 공정 오차 및 외부 응력은 진동형 자이로스코프와 같은 MEMS 소자의 제조 수율에 많은 영향을 미친다. 특히 비연성 진동형 자이로스코프의 경우 감지모드와 구동모드의 주파수 차의 특성은 수율에 직접적인 영향을 미친다. SOI (Silicon-On-Insulator) 공정 및 양극접합 공정으로 패키징된 자이로스코프의 경우, 노칭현상으로 인하여 구조물이 불균일하게 가공되며, 동시에 열팽창계수 차로 인하여 접합된 기판에 큰 휨이 발생한다. 그 결과주파수 차의 분포가 커지고, 동시에 수율은 저하되었다. 이를 개선하기 위하여 SiOG (Silicon On Glass) 기술을 적용하였다. SiOG 공정에서는 접합 후에 기판의 휨을 최소화 하기 위하여 1장의 실리콘 기관과 2장의 유리 기판을 사용하였으며, 노칭을 방지하기 위하여 금속 박막을 사용하였다. 그 결과 노칭 현상이 방지되었으며, 기판의 휨도 감소하였다. 또한 주파수 차의 분포도 매우 균일하게 되었으며, 주파수 차의 편차 또한 개선이 되었다. 그 결과 높은 수율 및 보다 강건한 MEMS 자이로스코프를 개발할 수 있었다.

  • PDF

Ni 캡의 전기도금 및 SnBi 솔더 Debonding을 이용한 웨이퍼 레벨 MEMS Capping 공정 (Wafer-Level MEMS Capping Process using Electrodeposition of Ni Cap and Debonding with SnBi Solder Layer)

  • 최정열;이종현;문종태;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제16권4호
    • /
    • pp.23-28
    • /
    • 2009
  • Si 기판의 캐비티 형성이 불필요한 웨이퍼-레벨 MEMS capping 공정을 연구하였다. 4인치 Si 웨이퍼에 Ni 캡을 전기도금으로 형성하고 Ni 캡 rim을 Si 하부기판의 Cu rim에 에폭시 본딩한 후, SnBi debonding 층을 이용하여 상부기판을 Ni 캡 구조물로부터 debonding 하였다. 진공증착법으로 형성한 SnBi debonding 층은 Bi와 Sn 사이의 심한 증기압 차이에 의해 Bi/Sn의 2층 구조로 이루어져 있었다. SnBi 증착 층을 $150^{\circ}C$에서 15초 이상 유지시에는 Sn과 Bi 사이의 상호 확산에 의해 eutectic 상과 Bi-rich $\beta$상으로 이루어진 SnBi 합금이 형성되었다. $150^{\circ}C$에서 유지시 SnBi의 용융에 의해 Si 기판과 Ni 캡 구조물 사이의 debonding이 가능하였다.

  • PDF

Epi poly를 이용한 MEMS 소자용 웨이퍼 단위의 진공 패키징에 대한 연구 (A Study on Wafer Level Vacuum Packaging using Epi poly for MEMS Applications)

  • 석선호;이병렬;전국진
    • 반도체디스플레이기술학회지
    • /
    • 제1권1호
    • /
    • pp.15-19
    • /
    • 2002
  • A new vacuum packaging process in wafer level is developed for the surface micromachining devices using glass silicon anodic bonding technology. The inside pressure of the packaged device was measured indirectly by the quality factor of the mechanical resonator. The measured Q factor was about 5$\times10^4$ and the estimated inner pressure was about 1 mTorr. And it is also possible to change the inside pressure of the packaged devices from 2 Torr to 1 mTorr by varying the amount of the Ti gettering material. The long-term stability test is still on the way, but in initial characterization, the yield is about 80% and the vacuum degradation with time was not observed.

  • PDF

AlN Based RF MEMS Tunable Capacitor with Air-Suspended Electrode with Two Stages

  • Cheon, Seong J.;Jang, Woo J.;Park, Hyeon S.;Yoon, Min K.;Park, Jae Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권1호
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, a MEMS tunable capacitor was successfully designed and fabricated using an aluminum nitride film and a gold suspended membrane with two air gap structure for commercial RF applications. Unlike conventional two-parallel-plate tunable capacitors, the proposed tunable capacitor consists of one air suspended top electrode and two fixed bottom electrodes. One fixed and the top movable electrodes form a variable capacitor, while the other one provides necessary electrostatic actuation. The fabricated tunable capacitor exhibited a capacitance tuning range of 375% at 2 GHz, exceeding the theoretical limit of conventional two-parallel-plate tunable capacitors. In case of the contact state, the maximal quality factor was approximately 25 at 1.5 GHz. The developed fabrication process is also compatible with the existing standard IC (integrated circuit) technology, which makes it suitable for on chip intelligent transceivers and radios.

사각고리형상의 AuSn 합금박막을 이용한 MEMS 밀봉 패키징 및 특성 시험 (On-Chip Process and Characterization of the Hermetic MEMS Packaging Using a Closed AuSn Solder-Loop)

  • 서영호;김성아;조영호;김근호;부종욱
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.435-442
    • /
    • 2004
  • This paper presents a hermetic MEMS on-chip package bonded by a closed-loop AuSn solder-line. We design three different package specimens, including a substrate heated specimen without interconnection-line (SHX), a substrate heated specimen with interconnection-line (SHI) and a locally heated specimen with interconnection-line (LHI). Pressurized helium leak test has been carried out for hermetic seal evaluation in addition to the critical pressure test for bonding strength measurement. Substrate heating method (SHX, SHI) requires the bonding time of 40min. at 400min, while local heating method (LHI) requires 4 min. at the heating power of 6.76W. In the hermetic seal test. SHX, SHI and LHI show the leak rates of 5.4$\pm$6.7${\times}$$^{-10}$ mbar-l/s, 13.5$\pm$9.8${\times}$$^{-10}$ mbar-l/s and 18.5$\pm$9.9${\times}$$^{-10}$ mbar-l/s, respectively, for an identical package chamber volume of 6.89$\pm$0.2${\times}$$^{-10}$. In the critical pressure test, no fracture is found in the bonded specimens up to the applied pressure of 1$\pm$0.1MPa, resulting in the minimum bonding strength of 3.53$\pm$0.07MPa. We find that the present on-chip packaging using a closed AuSn solder-line shows strong potential for hermetic MEMS packaging with interconnection-line due to the hermetic seal performance and the shorter bonding time for mass production.