• Title/Summary/Keyword: Low-voltage

Search Result 6,405, Processing Time 0.03 seconds

Effect of Oxygen Addition on Residual Stress Formation of Cubic Boron Nitride Thin Films (입방정 질화붕소 박막의 잔류응력 형성에 미치는 산소 첨가 효과)

  • Jang, Hee-Yeon;Park, Jong-Keuk;Lee, Wook-Seong;Baik, Young-Joon;Lim, Dae-Soon;Jeong, Jeung-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • In this study we investigated the oxygen effect on the nucleation and its residual stress during unbalanced magnetron sputtering. Up to 0.5% in oxygen flow rate, cubic phase (c-BN) was dominated with extremely small fraction of Hexagonal phase (h-BN) of increasing trend with oxygen concentration, whereas hexagonal phase is dominated beyond 0.75% flow rate. Interestingly, the residual stress in cubic-phase-dominated films was substantially reduced with small amount of oxygen (${\sim}0.5%$) down to a low value comparable to the h-BN case. This may be because oxygen atoms break B-N $sp^3$ bonds and make B-O bonds more favorably, increasing $sp^2$ bonds preference, as revealed by FTIR and NEXAFS. It was confirmed by experimental facts that the threshold bias voltage for nucleation and growth of cubic phase were increased from -55 V to -70 V and from -50 V to -60 V respectively. The reduction of residual stress in O-added c-BN films is seemingly resulting from the microstructure of the films. The oxygen tends to increase slightly the amount of h-BN phase in the grain boundary of c-BN and the soft h-BN phase of 3D network including surrounding nano grains of cubic phase may relax the residual stress of cubic phase.

Effects of process variables on aqueous-based AlOx insulators for high-performance solution-processed oxide thin-film transistors

  • Huh, Jae-Eun;Park, Jintaek;Lee, Junhee;Lee, Sung-Eun;Lee, Jinwon;Lim, Keon-Hee;Kim, Youn Sang
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.117-123
    • /
    • 2018
  • Recently, aqueous method has attracted lots of attention because it enables the solution-processed metal oxide thin film with high electrical properties in low temperature fabrication condition to various flexible devices. Focusing the development of aqueous route, many researchers are only focused on metal oxide materials. However, for expansive application of the aqueous-based metal oxide films, the systematic study of performance change with process variables for the development of aqueous-based metal oxide insulator film is urgently required. Here, we propose importance of process variables to achieve high electrical-performance metal oxide insulator based on the aqueous method. We found that the significant process variables including precursor solution temperature and humidity during the spincoating process strongly affect chemical, physical, and electrical properties of $AlO_x$ insulators. Through the optimization of significant variables in process, an $AlO_x$ insulator with a leakage current value approximately $10^5$ times smaller and a breakdown voltage value approximately 2-3 times greater than un-optimized $AlO_x$ was realized. Finally, by introducing the optimized $AlO_x$ insulators to solutionprocessed $InO_x$ TFTs, we successfully achieved $InO_x/AlO_x$ TFTs with remarkably high average field-effect mobility of ${\sim}52cm^2V^{-1}\;s^{-1}$ and on/off current ratio of 106 at fabrication temperature of $250^{\circ}C$.

Doping Effect of Yb2O3 on Varistor Properties of ZnO-V2O5-MnO2-Nb2O5 Ceramic Semiconductors

  • Nahm, Choon-Woo
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.586-591
    • /
    • 2019
  • This study describes the doping effect of $Yb_2O_3$ on microstructure, electrical and dielectric properties of $ZnO-V_2O_5-MnO_2-Nb_2O_5$ (ZVMN) ceramic semiconductors sintered at a temperature as low as $900^{\circ}C$. As the doping content of $Yb_2O_3$ increases, the ceramic density slightly increases from 5.50 to $5.54g/cm^3$; also, the average ZnO grain size is in the range of $5.3-5.6{\mu}m$. The switching voltage increases from 4,874 to 5,494 V/cm when the doping content of $Yb_2O_3$ is less than 0.1 mol%, whereas further doping decreases this value. The ZVMN ceramic semiconductors doped with 0.1 mol% $Yb_2O_3$ reveal an excellent nonohmic coefficient as high as 70. The donor density of ZnO gain increases in the range of $2.46-7.41{\times}10^{17}cm^{-3}$ with increasing doping content of $Yb_2O_3$ and the potential barrier height and surface state density at the grain boundaries exhibits a maximum value (1.25 eV) at 0.1 mol%. The dielectric constant (at 1 kHz) decreases from 592.7 to 501.4 until the doping content of $Yb_2O_3$ reaches 0.1 mol%, whereas further doping increases it. The value of $tan{\delta}$ increases from 0.209 to 0.268 with the doping content of $Yb_2O_3$.

Review : Effectiveness of transcranial direct current stimulation in rodent models of Alzheimer's disease (알츠하이머병 쥐 모델에서 경두개 직류 전기자극의 효용성 검토)

  • Kim, Ji-Eun;Park, Ye-Eun;Jeong, Jin-Hyoung;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.403-412
    • /
    • 2021
  • Alzheimer's disease (AD) is the most common cause of dementia, showing progressive neurodegeneration. Although oral medications for symptomatic improvement still take a huge part of treatment, there are several limitations caused by pharmacology-based real world clinic. In this respect, non-pharmacologic treatment for AD is rising to prominence. Transcranial direct current stimulation (tDCS) is a one of the non-invasive neuromodulation technique, using low-voltage direct current. In terms of safety, tDCS already has been proven through numerous previous reports. This review focused on behavioral, neurophysiologic and histopathologic improvement by applying tDCS in AD rodent models, thereby suggesting reliable background evidence for human-based tDCS study.

A Study on Magnetic Field Reduction Design Technique around 345 kV Transmission Line with 2-wire Set Passive Loop (2선식 수동루프를 이용한 345[kV] 송전선 주변의 자계저감 설계기법 연구)

  • Kim, Eung Sik
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.10-17
    • /
    • 2021
  • The controversy over the risk of the human body being affected by electromagnetic fields emitted from 60 Hz power lines continues without end. There are currently no new studies or research progress being made in this direction that is notable, and the number of civil complaints is gradually increasing. The problem is that each study produces different results, among which the effect of exposure to magnetic fields on childhood leukemia is a major one. In Korea, an electrician who was maintaining a 22.9 kV power line died of leukemia, which has recently been recognized as an occupational disease. Methods to reduce magnetic fields from power lines include shielding with wire loops, incorporating split phases and compaction techniques, installing underground power lines, converting to high-voltage direct current (HVDC), and increasing the ground clearance of transmission towers. Depending on whether a separate power supply is needed or not, there are two types of wire loops: passive loop and active loop. Magnetic field reduction is currently done through underground power lines; however, the disadvantage of this process is high construction costs. Installing passive loops, with relatively low construction costs, leads to lower magnetic field reduction rates than installing underground cables and a weakness to not solving the landscape problem. This methodological study aims at designing methods and reducing the effects of 2-wire set loops-the simplest and most practical. Since the method proposed in this study has been designed after analyzing the distribution of complex electromagnetic fields near the expected loop installation location, a practical design can be implemented without the need for any difficult optimization programming.

Development of a 3 kW Grid-tied PV Inverter With GaN HEMT Considering Thermal Considerations (GaN HEMT를 적용한 3kW급 계통연계 태양광 인버터의 방열 설계 및 개발)

  • Han, Seok-Gyu;Noh, Yong-Su;Hyon, Byong-Jo;Park, Joon-Sung;Joo, Dongmyoung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.325-333
    • /
    • 2021
  • A 3 kW grid-tied PV inverter with Gallium nitride high-electron mobility transistor (GaN HEMT) for domestic commercialization was developed using boost converter and full-bridge inverter with LCL filter topology. Recently, many GaN HEMTs are manufactured as surface mount packages because of their lower parasitic inductance characteristic than standard TO (transistor outline) packages. A surface mount packaged GaN HEMT releases heat through either top or bottom cooling method. IGOT60R070D1 is selected as a key power semiconductor because it has a top cooling method and fairly low thermal resistances from junction to ambient. Its characteristics allow the design of a 3 kW inverter without forced convection, thereby providing great advantages in terms of easy maintenance and high reliability. 1EDF5673K is selected as a gate driver because its driving current and negative voltage output characteristics are highly optimized for IGOT60R070D1. An LCL filter with passive damping resistor is applied to attenuate the switching frequency harmonics to the grid-tied operation. The designed LCL filter parameters are validated with PSIM simulation. A prototype of 3 kW PV inverter with GaN HEMT is constructed to verify the performance of the power conversion system. It achieved high power density of 614 W/L and peak power efficiency of 99% for the boost converter and inverter.

Reduction of Source/Drain Series Resistance in Fin Channel MOSFETs Using Selective Oxidation Technique (선택적 산화 방식을 이용한 핀 채널 MOSFET의 소스/드레인 저항 감소 기법)

  • Cho, Young-Kyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.104-110
    • /
    • 2021
  • A novel selective oxidation process has been developed for low source/drain (S/D) series resistance of the fin channel metal oxide semiconductor field effect transistor (MOSFET). Using this technique, the selective oxidation fin-channel MOSFET (SoxFET) has the gate-all-around structure and gradually enhanced S/D extension regions. The SoxFET demonstrated over 70% reduction in S/D series resistance compared to the control device. Moreover, it was found that the SoxFET behaved better in performance, not only a higher drive current but also higher transconductances with suppressing subthreshold swing and drain induced barrier lowering (DIBL) characteristics, than the control device. The saturation current, threshold voltage, peak linear transconductance, peak saturation transconductance, subthreshold swing, and DIBL for the fabricated SoxFET are 305 ㎂/㎛, 0.33 V, 13.5 𝜇S, 76.4 𝜇S, 78 mV/dec, and 62 mV/V, respectively.

Study of Harmonic Suppression of Ship Electric Propulsion Systems

  • Wang, Yifei;Yuan, Youxin;Chen, Jing
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1303-1314
    • /
    • 2019
  • This paper studies the harmonic characteristics of ship electric propulsion systems and their treatment methods. It also adopts effective measures to suppress and prevent ship power systems from affecting ship operation due to the serious damage caused by harmonics. Firstly, the harmonic characteristics of a ship electric propulsion system are reviewed and discussed. Secondly, aiming at problems such as resonant frequency and filter characteristics variations, resonance point migration, and unstable filtering performances in conventional passive filters, a method for fully tuning of a passive dynamic tunable filter (PDTF) is proposed to realize harmonic suppression. Thirdly, to address the problems of the uncontrollable inductance L of traditional air gap iron core reactors and the harmonics of power electronic impedance converters (PEICs), this paper proposes an electromagnetic coupling reactor with impedance transformation and harmonic suppression characteristics (ECRITHS), with the internal filter (IF) designed to suppress the harmonics generated by PEICs. The ECRITHS is characterized by both harmonic suppression and impedance change. Fourthly, the ECRITHS is investigated. This investigation includes the harmonic suppression characteristics and impedance transformation characteristics of the ECRITHS at the fundamental frequency, which shows the good performance of the ECRITHS. Simulation and experimental evaluations of the PDTF are carried out. Multiple PDTFs can be configured to realize multi-order simultaneous dynamic filtering, and can effectively eliminate the current harmonics of ship electric propulsion systems. This is done to reduce the total harmonic distortion (THD) of the supply currents to well below the 5% limit imposed by the IEEE-519 standard. The PDTF also can eliminate harmonic currents in different geographic places by using a low voltage distribution system. Finally, a detailed discussion is presented, with challenges and future implications discussed. The research results are intended to effectively eliminate the harmonics of ship electric power propulsion systems and to improve the power quality of ship power systems. This is of theoretical and practical significance for improving the power quality and power savings of ship power systems.

Measurement of Thermal Characteristics of Thin Film Patterned Heating Heater on Silicon Semiconductor Substrate (실리콘 반도체 기판에 제작된 박막 패턴 발열 히터의 열특성 측정)

  • Park, Hyun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.9-13
    • /
    • 2019
  • In this study, a miniature thin film-patterned heater was fabricated on a silicon substrate using semiconductor process technology and the thermal characteristics of the applied voltage, power, and temperature of the thin film heater were measured and analyzed. The temperature of the thin film pattern heater increased with increasing power, but the temperature increase rate was gradual at high power intervals. The characteristics of the high temperature section of the platinum thin film-patterned heater were analyzed using the heat resistance model under atmospheric and vacuum conditions. The thermal resistance measured in a vacuum atmosphere was 0.79 [K/mW] higher than the heat resistance value 0.69 [K/mW] in air. The temperature of the thin film pattern heater can be maintained at a low power in a vacuum rather than in air, and these results are expected to be utilized in the structural design of a thin film-patterned heater element.

Nonlinear optimal control for reducing vibrations in civil structures using smart devices

  • Contreras-Lopez, Joaquin;Ornelas-Tellez, Fernando;Espinosa-Juarez, Elisa
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.307-318
    • /
    • 2019
  • The frequently excessive vibrations presented in civil structures during seismic events or service conditions may result in users' discomfort, or worst, in structures failure, producing economic and even human casualties. This work contributes in proposing the synthesis of a nonlinear optimal control strategy for semiactive structural control, with the main characteristic that the synthesis considers both the structure model and the semiactive actuator nonlinear dynamics, which produces a nonlinear system that requires a nonlinear controller design. The aim is to reduce the unwanted vibrations in the response of civil structures, by means of intelligent fluid semiactive actuator such as the Magnetorheological Damper (MRD), which is a device with a low level of power consumption. The civil structures for which the proposed control methodology can be applied are those admitting a state-dependent coefficient factorized representation model, such as buildings, bridges, among others. A scaled model of a three storey building is analyzed as a case study, whose dynamical response involves displacement, velocity and acceleration of each one of the storeys, subjected to the North-South component of the September 19th., 2017, Puebla-Morelos (7.1M), Mexico earthquake. The investigation rests on comparing the structural response over time for two different conditions: with no control device installed and with one MRD installed between the first floor and the ground, where a nonlinear optimal signal for the MRD input voltage is determined. Simulation results are presented to show the effectiveness of the proposed controller for reducing the building's dynamical response.