Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.07.035

Effects of process variables on aqueous-based AlOx insulators for high-performance solution-processed oxide thin-film transistors  

Huh, Jae-Eun (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University)
Park, Jintaek (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University)
Lee, Junhee (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University)
Lee, Sung-Eun (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University)
Lee, Jinwon (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University)
Lim, Keon-Hee (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University)
Kim, Youn Sang (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.68, no., 2018 , pp. 117-123 More about this Journal
Abstract
Recently, aqueous method has attracted lots of attention because it enables the solution-processed metal oxide thin film with high electrical properties in low temperature fabrication condition to various flexible devices. Focusing the development of aqueous route, many researchers are only focused on metal oxide materials. However, for expansive application of the aqueous-based metal oxide films, the systematic study of performance change with process variables for the development of aqueous-based metal oxide insulator film is urgently required. Here, we propose importance of process variables to achieve high electrical-performance metal oxide insulator based on the aqueous method. We found that the significant process variables including precursor solution temperature and humidity during the spincoating process strongly affect chemical, physical, and electrical properties of $AlO_x$ insulators. Through the optimization of significant variables in process, an $AlO_x$ insulator with a leakage current value approximately $10^5$ times smaller and a breakdown voltage value approximately 2-3 times greater than un-optimized $AlO_x$ was realized. Finally, by introducing the optimized $AlO_x$ insulators to solutionprocessed $InO_x$ TFTs, we successfully achieved $InO_x/AlO_x$ TFTs with remarkably high average field-effect mobility of ${\sim}52cm^2V^{-1}\;s^{-1}$ and on/off current ratio of 106 at fabrication temperature of $250^{\circ}C$.
Keywords
Aluminum oxide; Dielectric; Aqueous route; Solution process; Thin-film transistor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Kamiya, K. Nomura, H. Hosono, Sci. Technol. Adv. Mater. 11 (2010) 1.
2 E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24 (2012) 2945.   DOI
3 S. Kim, Y.J. Choi, Y. Choi, M.S. Kang, J.H. Cho, Adv. Funct. Mater. 27 (2017) 1700651.   DOI
4 X.G. Yu, T.J. Marks, A. Facchetti, Nat. Mater. 15 (2016) 383.   DOI
5 B.N. Pal, B.M. Dhar, K.C. See, H.E. Katz, Nat. Mater. 8 (2009) 898.   DOI
6 J.W. Jo, Y.H. Kim, J. Park, J.S. Heo, S. Hwang, W.J. Lee, M.H. Yoon, M.G. Kim, S.K. Park, ACS Appl. Mater. Interfaces 9 (2017) 35114.   DOI
7 M.G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Nat. Mater. 10 (2011) 382.   DOI
8 G.R. Hong, S.S. Lee, Y. Jo, M.J. Choi, Y.C. Kang, B.H. Ryu, K.B. Chung, Y. Choi, S. Jeong, ACS Appl. Mater. Interfaces 8 (2016) 29858.   DOI
9 J.H. Park, K. Kim, Y.B. Yoo, S.Y. Park, K.H. Lim, K.H. Lee, H.K. Baik, Y.S. Kim, J. Mater. Chem. C 1 (2013) 7166.   DOI
10 J. Kim, S.H. Lim, Y.S. Kim, J. Am. Chem. Soc. 132 (2010) 14721.   DOI
11 S. Park, C.H. Kim, W.J. Lee, S. Sung, M.H. Yoon, Mater. Sci. Eng. R 114 (2017) 1.   DOI
12 K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Nat. Mater. 10 (2011) 45.   DOI
13 S.T. Meyers, J.T. Anderson, C.M. Hung, J. Thompson, J.F. Wager, D.A. Keszler, J. Am. Chem. Soc. 130 (2008) 17603.   DOI
14 Y. Hwan Hwang, J.-S. Seo, J. Moon Yun, H. Park, S. Yang, S.-H. Ko Park, B.-S. Bae, NPG Asia Mater. 5 (2013)e45.   DOI
15 K.H. Lim, J.E. Huh, J. Lee, N.K. Cho, J.W. Park, B.I. Nam, E. Lee, Y.S. Kim, ACS Appl. Mater. Interfaces 9 (2017) 548.   DOI
16 P.N. Plassmeyer, G. Mitchson, K.N. Woods, D.C. Johnson, C.J. Page, Chem. Mater. 29 (2017) 2921.   DOI
17 Y.S. Rim, H. Chen, T.-B. Song, S.-H. Bae, Y. Yang, Chem. Mater. 27 (2015) 5808.   DOI
18 K.H. Lee, S.W. Han, J.H. Park, Y.B. Yoo, S.J. Lee, H.K. Baik, K.M. Song, Jpn. J. Appl. Phys. 55 (2016) 010304.   DOI
19 J.S. Seo, J.H. Jeon, Y.H. Hwang, H. Park, M. Ryu, S.H.K. Park, B.S. Bae, Sci. Rep. 3 (2013) 3.
20 H. Faber, Y.H. Lin, S.R. Thomas, K. Zhao, N. Pliatsikas, M.A. McLachlan, A. Amassian, P.A. Patsalas, T.D. Anthopoulos, ACS Appl. Mater. Interfaces 7 (2015) 782.   DOI
21 A. Liu, G. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins, F. Shan, RSC Adv. 5 (2015) 86606.   DOI
22 W. Xu, H. Cao, L. Liang, J.B. Xu, ACS Appl. Mater. Interfaces 7 (2015) 14720.   DOI
23 G. Liu, A. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins, Y. Wang, F. Shan, Adv. Funct. Mater. 25 (2015) 2564.   DOI
24 A. Liu, G.X. Liu, H.H. Zhu, H.J. Song, B. Shin, E. Fortunato, R. Martins, F.K. Shan, Adv. Funct. Mater. 25 (2015) 7180.   DOI
25 F.-C. Chiu, Adv. Mater. Sci. Eng. 2014 (2014) 1.
26 K.H. Lee, J.H. Park, Y.B. Yoo, S.W. Han, S.J. Lee, H.K. Baik, Appl. Phys. Express 8 (2015) 081101.   DOI
27 A. Hasegawa, T. Tanno, S. Nogami, M. Satou, J. Nucl. Mater. 417 (2011) 491.   DOI
28 R.A. Alberty, J. Biol. Chem. 244 (1969) 3290.
29 T. Urabe, T. Tsugoshi, M. Tanaka, J. Mass Spectrom. 44 (2009) 193.   DOI
30 A. Sarpola, V. Hietapelto, J. Jalonen, J. Jokela, R.S. Laitinen, J. Ramo, J. Mass Spectrom. 39 (2004) 1209.   DOI
31 B. Brauer, D.R.T. Zahn, T. Ruffer, G. Salvan, Chem. Phys. Lett. 432 (2006) 226.   DOI
32 R.R. Hegde, J.E. Spruiell, G.S. Bhat, Polym. Int. 63 (2014) 1112.   DOI
33 H.D. Keith, F.J. Padden, J. Appl. Phys. 34 (1963) 2409.   DOI
34 A.G. Shtukenberg, Y.O. Punin, E. Gunn, B. Kahr, Chem. Rev. 112 (2012) 1805.   DOI
35 E. Gunn, Small Molecule Banded Spherulites (Ph.D. Dissertation), University of Washington Seattle, Washington, USA, 2009.
36 Y. Wang, X.F. Liu, J. Peng, F. Qiu, RSC Adv. 5 (2015) 107970.   DOI
37 L.G.M. Beekmans, G.J. Vancso, Polymer 41 (2000) 8975.   DOI
38 M.R. Niazi, R. Li, Qiang Li, A.R. Kirmani, M. Abdelsamie, Q. Wang, W. Pan, M.M. Payne, J.E. Anthony, D.M. Smilgies, S.T. Thoroddsen, E.P. Giannelis, A. Amassian, Nat. Commun. 6 (2015) 8598.   DOI
39 E. Woo, G. Lugito, Polymers 8 (2016) 329.   DOI
40 C. Zhang, L. Lu, W. Li, L. Li, C. Zhou, Polym. Bull. 73 (2016) 2961.   DOI
41 V. Viswanath, S. Maity, J.R. Bochinski, L.I. Clarke, R.E. Gorga, Macromolecules 46 (2013) 8596.   DOI
42 N. Haque, R.F. Cochrane, A.M. Mullis, Crystals 7 (2017).
43 M. Egginger, S. Bauer, R. Schwodiauer, H. Neugebauer, N.S. Sariciftci, Monatsh. Chem. Chem. Mon. 140 (2009) 735.   DOI