DOI QR코드

DOI QR Code

Measurement of Thermal Characteristics of Thin Film Patterned Heating Heater on Silicon Semiconductor Substrate

실리콘 반도체 기판에 제작된 박막 패턴 발열 히터의 열특성 측정

  • Park, Hyun-Sik (Department of Electrical, Electronic and Control Engineering, Institute for Information technology Convergence, Hankyong National University)
  • 박현식 (한경대학교 전기전자제어공학과, IT융합기술연구소)
  • Received : 2019.03.05
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

In this study, a miniature thin film-patterned heater was fabricated on a silicon substrate using semiconductor process technology and the thermal characteristics of the applied voltage, power, and temperature of the thin film heater were measured and analyzed. The temperature of the thin film pattern heater increased with increasing power, but the temperature increase rate was gradual at high power intervals. The characteristics of the high temperature section of the platinum thin film-patterned heater were analyzed using the heat resistance model under atmospheric and vacuum conditions. The thermal resistance measured in a vacuum atmosphere was 0.79 [K/mW] higher than the heat resistance value 0.69 [K/mW] in air. The temperature of the thin film pattern heater can be maintained at a low power in a vacuum rather than in air, and these results are expected to be utilized in the structural design of a thin film-patterned heater element.

본 연구에서는 박막 패턴의 히터를 반도체 공정 기술을 이용하여 소형 백금 박막 히터를 실리콘 기판 상에 제작하고 박막히터의 인가전압, 전력, 온도의 열특성을 측정 분석하였다. 박막 패턴 히터의 온도는 전력 증가에 따라서 증가하였으나 높은 전력구간에서는 온도 증가율이 완만해지는 결과를 확인하였다. 백금 박막 패턴 히터의 고온구간의 특성은 측정 환경에 의한 영향으로서 대기분위기와 진공분위기에서 측정한 결과를 열저항 모델을 이용하여 열특성을 해석하였다. 진공분위기에서 측정한 경우가 열저항값 0.79 [K/mW]로서 대기분위기에서의 열저항 값 0.69 [K/mW]보다 높게 측정되었다. 대기분위기보다는 진공분위기에서 낮은 전력으로 박막 패턴 히터의 온도를 유지할 수 있었고 이들 결과는 박막 패턴 히터 소자의 구조 설계에 활용이 기대된다.

Keywords

SHGSCZ_2019_v20n6_9_f0001.png 이미지

Fig. 1. Fabricated Pt thin film heater structure on Silicon substrate.

SHGSCZ_2019_v20n6_9_f0002.png 이미지

Fig. 2. Variation of resistance Pt thin film heater with temperature.

SHGSCZ_2019_v20n6_9_f0003.png 이미지

Fig. 3. Measurement system for Pt thin film patterned heater.

SHGSCZ_2019_v20n6_9_f0004.png 이미지

Fig. 4. Power with applied voltages in sample(A).

SHGSCZ_2019_v20n6_9_f0005.png 이미지

Fig. 5. Power with applied voltages in sample(B).

SHGSCZ_2019_v20n6_9_f0006.png 이미지

Fig. 6. Power with applied voltages in sample(C).

SHGSCZ_2019_v20n6_9_f0007.png 이미지

Fig. 7. Variation of temperature with power in sample(A).

SHGSCZ_2019_v20n6_9_f0008.png 이미지

Fig. 8. Variation of temperature with power in sample(B).

SHGSCZ_2019_v20n6_9_f0009.png 이미지

Fig. 9. Variation of temperature with power in sample (C).

SHGSCZ_2019_v20n6_9_f0010.png 이미지

Fig. 10. Comparison of results of temperature measurement under vacuum and air atmosphere.

References

  1. Wen-Yang Chang,Y.Sheng Hsihe, "Multilayer microheater based on glass substrate using MEMS technology", Microelectronic Engineering, Vol. 149, pp.25-30, January 2016. DOI: https://doi.org/10.1016/j.mee.2015.09.005
  2. Mahanth Prasad, " Design, development and reliability testing of a low power bridge-type micromachined hotplate", Microelectronics reliablity, Vol.55, Issue 6, pp.937-944, May 2015. DOI: https://doi.org/10.1016/j.microrel.2015.03.005
  3. A. Zribi, M. Barthes, S. Begot,F. Lanzetta, J. Y. Rauch, V. Moutarlier, "Design, fabrication and characterization of thin film resistance for heat flux sensing application", Sensors and Actuators A, Vol.245, pp.26-39, July 2016. DOI: http://dx.doi.org/10.1016/j.sna.2016.04.040
  4. Jithin M.A., K.L. Ganapathi, G.N.V.R. Vikram, N.K. Udayashankar, " Pulsed DC magnetron sputtered titanium nitride thin films for localized heating applications in MEMS devices", Sensors and Actuators A, Vol.272, pp.199-205, April 2018. DOI: https://doi.org/10.1016/j.sna.2017.12.066
  5. Shifeng Yu, S. Wang, M. Lu, L. Zuo, "A novel polyimide based miro heater with high temperature uniformity", Sensors and Actuators A, Vol.257, pp. 58-64, April 2017. DOI: https://doi.org/10.1016/j.sna.2017.02.006
  6. Qin Zhou, Allen Sussman, J.Chang, J.Dong, A. Zettl, W. Mickelson," Fast response integrated MEMS microheaters for ultra low power gas detection", Sensors and Actuators A, Vol.223, pp.67-75, March 2015. DOI: https://doi.org/10.1016/j.sna.2014.12.005
  7. R.M. Tiggelaar, R.G.P.Sanders, A.W.Groenland,J.G.E, Gardeniers," Stability of thin platinum films implemented in microdevices ", Sensors and Actuators A, Vol.152, Issue 1, pp. 39-47, May 2009. DOI: https://doi.org/10.1016/j.sna.2009.03.017
  8. M.Sreemany, S.Sen," Effect of substrate temperature and annealing temperature on the structural, electrical and microstructural properties of thin Pt film by rf magnetron sputtering, Applied Surface science, Vol.253, Issue 5, pp.2739-2746, December 2006. DOI: https://doi.org/10.1016/j.apsusc.2006.05.040
  9. M.Baroncini, P.Placidi, G.C. Cardinali, A.Scorzoni, "Thermal characterization of a microheater for micromachined gas sensors", Sensors and Actuators A, Vol.115, Issue 1, pp.8-14, September 2004. DOI: https://doi.org/10.1016/j.sna.2004.03.012
  10. X.jack Hu, A. Jain, Kenneth E. Goodson, " Investigation of the natural convection boundary condition in microfabricated structures", International Journal of thermal sciences, Vol.47, Issue 7, pp.820-824, July 2008. DOI: https://doi.org/10.1016/j.ijthermalsci.2007.07.011