Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.10.586

Doping Effect of Yb2O3 on Varistor Properties of ZnO-V2O5-MnO2-Nb2O5 Ceramic Semiconductors  

Nahm, Choon-Woo (Department of Electrical Engineering, Dongeui University)
Publication Information
Korean Journal of Materials Research / v.29, no.10, 2019 , pp. 586-591 More about this Journal
Abstract
This study describes the doping effect of $Yb_2O_3$ on microstructure, electrical and dielectric properties of $ZnO-V_2O_5-MnO_2-Nb_2O_5$ (ZVMN) ceramic semiconductors sintered at a temperature as low as $900^{\circ}C$. As the doping content of $Yb_2O_3$ increases, the ceramic density slightly increases from 5.50 to $5.54g/cm^3$; also, the average ZnO grain size is in the range of $5.3-5.6{\mu}m$. The switching voltage increases from 4,874 to 5,494 V/cm when the doping content of $Yb_2O_3$ is less than 0.1 mol%, whereas further doping decreases this value. The ZVMN ceramic semiconductors doped with 0.1 mol% $Yb_2O_3$ reveal an excellent nonohmic coefficient as high as 70. The donor density of ZnO gain increases in the range of $2.46-7.41{\times}10^{17}cm^{-3}$ with increasing doping content of $Yb_2O_3$ and the potential barrier height and surface state density at the grain boundaries exhibits a maximum value (1.25 eV) at 0.1 mol%. The dielectric constant (at 1 kHz) decreases from 592.7 to 501.4 until the doping content of $Yb_2O_3$ reaches 0.1 mol%, whereas further doping increases it. The value of $tan{\delta}$ increases from 0.209 to 0.268 with the doping content of $Yb_2O_3$.
Keywords
$Yb_2O_3$; doping effect; microstructure; electrical properties; varistors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Matsuoka, Jpn. J. Appl. Phys., 10, 736 (1971).   DOI
2 L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65, 639 (1986).
3 T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990).   DOI
4 H. R. Pilipp and L. M. Levinson, J. Appl. Phys., 46, 1332 (1976).   DOI
5 K. Mukae, Am. Ceram. Bull., 66, 1329 (1987).
6 C.-W. Nahm and C.-H. Park, J. Mater. Sci., 35, 3037 (2000).   DOI
7 J.-K. Tsai and T.-B. Wu, J. Appl. Phys., 76, 481 (1994).
8 J.-K. Tsai and T.-B. Wu, Mater. Lett., 26, 199 (1996).   DOI
9 C.-W. Nahm, J. Am. Ceram. Soc., 94, 2269 (2011).   DOI
10 C.-W. Nahm, J. Mater. Sci.: Mater. Electron., 22, 444 (2011).   DOI
11 C.-W. Nahm, Microelectron. Reliability, 54, 2836 (2014).   DOI
12 C.-W. Nahm, J. Mater. Sci.: Mater. Electron., 23,457 (2012).   DOI
13 C.-S. Chen, J. Mater. Sci., 38, 1033 (2003).   DOI
14 H. Pfeiffer and K. M. Knowles, J. Eur. Ceram. Soc., 24, 1199 (2004).   DOI
15 M. Zhao, X. C. Liu, W. M. Wang, F. Gao and C. S. Tian, Ceram. Int., 34, 1425 (2008).   DOI
16 Z. Ming, S. Yu and T. C. Sheng, J. Eur. Ceram. Soc., 31, 2331 (2011).   DOI
17 M. Mirzayi and M. H. Hekmatshoar, Phys. B (Amsterdam, Neth.), 414, 50 (2013).   DOI
18 C.-W. Nahm, J. Alloys Compd., 578, 132 (2013)   DOI
19 C.-W. Nahm, J. Korean Ceram. Soc., 55, 504 (2018)   DOI
20 J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc., 55,109 (1972).   DOI
21 M. Mukae, K. Tsuda and I. Nagasawa, J. Appl. Phys., 50, 447 (1979).