• Title/Summary/Keyword: Low-power Technique

Search Result 1,165, Processing Time 0.025 seconds

Low-Power Synchronization Technique for On-Chip Communication (온 칩 통신을 위한 저 전력 동기화 기술)

  • Lee, Jung-Hyun;Kim, Dong-Chul;Eo, Yung-Seon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.33-38
    • /
    • 2011
  • A novel low-power synchronization technique is presented for the local synchronization. Since the proposed technique transmits an enable signal instead of a clock signal which consumes large power, it can considerably reduce the power consumption. The source-synchronization scheme which is widely adopted for the local synchronization is compared with the proposed technique. It is shown that the proposed low-power synchronization technique provides approximately 50% power saving.

Self-Power Gating Technique For Low Power Asynchronous Circuit

  • Mai, Kim-Ngan Thi;Vo, Huan Minh
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.548-557
    • /
    • 2018
  • In this paper, Asynchronous Self-Power Gating technique (ASPG) is used to reduce consumption power in asynchronous digital watch application. The power gating control signal is automatically generated by internal system operation characteristics instead of using replica circuit delay or four-phase handshaking protocol. Isolation cell is designed to insert it between power gating domain and normal operation domain. By using self-power gating circuit, asynchronous digital watch application consumes very low power and maintains data during sleep mode. The comparison results show the proposed ASPG technique saves leakage power up to 40.47% and delay time is reduced to 71% compared to the conventional circuit.

A Register Scheduling and Allocation Algorithm for Low Power High Level synthesis (저전력 상위 레벨 합성을 위한 레지스터 스케줄링 및 할당알고리듬)

  • 최지영;인치호;김희석
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.188-191
    • /
    • 2000
  • This paper presents a register scheduling and allocation algorithm for high level synthesis. The proposed algorithm executes the low power scheduling to reduce the switching activity using shut down technique which was not unnecessary the calculation through the extraction DFG from VHDL description. Also, the register allocation algorithm determines the minimum register after the life time analysis of all variable. It is minimum the switching activity using graph coloring technique for low power consumption. The proposed algorithm proves the effect through various filter benchmark to adopt a new scheduling and allocation algorithm considering the low power.

  • PDF

A Cascaded Hybrid Multilevel Inverter Incorporating a Reconfiguration Technique for Low Voltage DC Distribution Applications

  • Khomfoi, Surin
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.340-350
    • /
    • 2016
  • A cascaded hybrid multilevel inverter including a reconfiguration technique for low voltage dc distribution applications is proposed in this paper. A PWM generation fault detection and reconfiguration paradigm after an inverter cell fault are developed by using only a single-chip controller. The proposed PWM technique is also modified to reduce switching losses. In addition, the proposed topology can reduce the number of required power switches compared to the conventional cascaded multilevel inverter. The proposed technique is validated by using a 3-kVA prototype. The switching losses of the proposed multilevel inverter are also investigated. The experimental results show that the proposed hybrid inverter can improve system efficiency, reliability and cost effectiveness. The efficiency of proposed system is 97.45% under the tested conditions. The proposed hybrid inverter topology is a promising method for low voltage dc distribution and can be applied for the multiple loads which are required in a data center or telecommunication building.

A Technique of ADD-based Architecture Design for Low Power Embedded Software (저전력 임베디드 소프트웨어 개발을 위한 ADD 기반의 아키텍처 설계 기법)

  • Lee, Jae-Wuk;Hong, Jang-Eui
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.4
    • /
    • pp.195-204
    • /
    • 2013
  • The embedded software has been developed in the forms of various versions that provides similar service based on product family. For increase usefulness of product family, software must has well-structured and reusable properties. Software architecture is important to improve adaptability in model-based development of embedded software mounted onto product family. In this paper, we proposed a technique of ADD(Attribute-Driven Design)-based software architecture design for low power software development. This technique provides a chance to consider the power consumption issue in design phase of software, and makes possible to develop low power embedded software.

A Low Cost Maximum Power Point Tracking Technique for the Solar Charger

  • Nguyen, Thanh Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.5-6
    • /
    • 2012
  • In this paper, a simplified maximum power point tracking technique for the solar charger is presented. Main advantages of the proposed charger include low cost and optimized charge time. The maximum power point tracking method is used to deliver the maximum power from PV array to the battery thereby reducing the charge time. Moreover, the proposed technique which tracks the maximum power point by adjusting output current helps reduce the quantity of required number of sensors for the charger. The experimental protype was implemented by using an 80W PV array, a buck converter and a digital signal processor to verify the feasibility of the proposed method.

  • PDF

The Low Voltage Analog Multiplier Using The Bulk-driven MOSFET Techniques (Bulk-Driven 기법을 이용한 저전압 Analog Multiplier)

  • 문태환;권오준;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.301-304
    • /
    • 2001
  • The analog multiplier is very useful building block in many circuits such as filter, frequency-shifter, and modulators. In recent year, The main design issue of circuit designer is low-voltage/low-power system design, because of all systems are recommended very integrated system and portable system In this paper, the proposed the four-quadrant analog multiplier is using the bulk-driven techniques. The bulk-driven technique is very useful technique in low-voltage system, compare with gate-driven technique. therefore the proposed analog multiplier is operated in 1V supply voltage. And the proposed analog multiplier is low power dissipation compare with the others. therefor the proposed analog multiplier is convenient in low-voltage/low-power in system.

  • PDF

A Low Power scan Design Architecture (저전력을 고려한 스캔 체인 구조 변경)

  • Min, Hyoung-Bok;Kim, In-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.458-461
    • /
    • 2005
  • Power dissipated during test application is substantially higher than power dissipated during functional operation which can decrease the reliability and lead to yield loss. This paper presents a new technique for power minimization during test application in full scan sequential circuits. This paper shows freezing of combinational logic parts during scan shift operation in test mode. The freezing technique leads to power to minimization. Significant power reduction in the scan techniques is achieved on ISCAS 89 benchmarks.

A Study on the High Performance PWM Technique for a Propulsion System of Railway

  • Lee, K.J.;Jeong, M.K.;Bang, L.S.;Seo, K.D.;Kim, N.H.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.425-430
    • /
    • 1998
  • This paper presents a high performance low switching PWM technique for the propulsion system of railway such as subway and high speed train. In order to achieve the continuous voltage control to six-step and a low harmonics with low switching frequency under 500Hz, the synchronous PWM technique is combined with a space vector overmodulation and implemented by using DSP. Improved performance and a validation of proposed method are showed by the digital simulation and the experimental results using a 1.65MVA IGBT VVVF inverter and inertia load equivalent to 160 tons railway vehicles.

  • PDF

A Low Power SAR ADC with Enhanced SNDR for Sensor Application (신호 대 잡음비가 향상된 센서 신호 측정용 저 전력 SAR형 A/D 변환기)

  • Jung, Chan-Kyeong;Lim, Shin-Il
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.31-35
    • /
    • 2018
  • This paper describes a low-power, SNDR (signal-to-noise and distortion ration) enhanced SAR (successive approximation register) type 12b ADC (analog-to-digital converter) with noise shaping technique. For low power consumption and small chip size of the DAC (digital-to-analog converter), the top plate sampling technique and the dummy capacitor switching technique are used to implement 12b operation with a 10b capacitor array in DAC. Noise shaping technique is applied to improve the SNDR by reducing the errors from the mismatching of DAC capacitor arrays, the errors caused by attenuation capacitor and the errors from the comparator noise. The proposed SAR ADC is designed with a $0.18{\mu}m$ CMOS process. The simulation results show that the SNDR of the SAR ADC without the noise shaping technique is 71 dB and that of the SAR ADC with the noise shaping technique is 84 dB. We can achieve the 13 dB improvement in SNDR with this noise shaping technique. The power consumption is $73.8{\mu}W$ and the FoM (figure-of-merit) is 5.2fJ/conversion-step.