• Title/Summary/Keyword: Low temperature GaN

Search Result 154, Processing Time 0.028 seconds

Characteristic absorbance of AlGaN epilayers grown on sapphire substrate (사파이어 기판 위에 성장된 AlGaN 에피층의 광 흡수 특성)

  • 김제원;박영균;김용태;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.153-157
    • /
    • 1999
  • The dependence of the absorption edge of wurtzite $Al_xGa_{1-x}N$ on alN mole fraction has been studied. The AlN mole fraction was varied from 0 to 1. The absorption coefficients at room temperature were determined by transmission and photothermal deflection spectroscopy. Photothermal deflection spectroscopy can be applied to determine the low absorbance values. From the results, the effective bandgaps of $Al_xGa_{1-x}N$ alloys were determined by choosing corresponding photon energies of the positions of the absorption coefficient of $6.3\times10^4\textrm{cm}^{-1}$ at the absorption curves of the $Al_xGa_{1-x}N$ alloys. From the energy position of the absorption coefficient versus AlN mole fraction, a bowing parameter of 1.3eV was determined. The bowing parameter agreed quite well with the measured effective bandgaps of AlGaN alloys.

  • PDF

GaN epitaxy growth by low temperature HYPE on $CoSi_2$ buffer/Si substrates (실리콘 기판과 $CoSi_2$ 버퍼층 위에 HVPE로 저온에서 형성된 GaN의 에피텍셜 성장 연구)

  • Ha, Jun-Seok;Park, Jong-Sung;Song, Oh-Sung;Yao, T.;Jang, Ji-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.159-164
    • /
    • 2009
  • We fabricated 40 nm-thick cobalt silicide ($CoSi_2$) as a buffer layer, on p-type Si(100) and Si(111) substrates to investigate the possibility of GaN epitaxial growth on $CoSi_2$/Si substrates. We deposited GaN using a HVPE (hydride vapor phase epitaxy) with two processes of process I ($850^{\circ}C$-12 minutes + $1080^{\circ}C$-30 minutes) and process II ($557^{\circ}C$-5 minutes + $900^{\circ}C$-5 minutes) on $CoSi_2$/Si substrates. An optical microscopy, FE-SEM, AFM, and HR-XRD (high resolution X-ray diffractometer) were employed to determine the GaN epitaxy. In case of process I, it showed no GaN epitaxial growth. However, in process II, it showed that GaN epitaxial growth occurred. Especially, in process II, GaN layer showed selfaligned substrate separation from silicon substrate. Through XRD ${\omega}$-scan of GaN <0002> direction, we confirmed that the combination of cobalt silicide and Si(100) as a buffer and HVPE at low temperature (process II) was helpful for GaN epitaxy growth.

Temperature-Dependent Photoluminescence from Er-implanted undoped and Mg-doped GaN

  • Kim, Sangsig;Sung, Man-Young;Junki Hong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.6-9
    • /
    • 2000
  • Selectively excited photoluminescence(PL) spectroscopy has been carried out on the ~1540 nm $^{4}$I$_{13}$ 3/ to $^{4}$I/wub 15/2/ emissions of the multiple Er$^{3+}$ centers observed in Er-implante undoped and Mg-doped GAN at temperatures ranging from 6K to 295K. The temperature dependence of the Er$^{3+}$ PL spectra selectively excited by below -gap light demonstrates different quenching rates for the distinct Er$^{3+}$ centers, and indicates that the PL spectra with the most rapid thermal quenching rats do not contribute to the room temperature, above-p-pumped Er$^{3+}$ spectrum. In addition, selective PL spectroscopy has ben carried out on the Er$^{3+}$ emission in Er-implanted undoped and Mg-doped GaN at temperatures ranging 6K to 295K. The results indicate that the previously reported enhancement of the violet-pumped centers contribution to the low temperature above excited Er$^{3+}$ PL in Mg-doped GaN is also evident at room temperature.temperature.

  • PDF

The annealing effects of Au/Te/Au n-GaAs structure (Au/Te/Au/ n-GaAs구조의 열처리 효과)

  • 정성훈;송복식;문동찬;김선태
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1013-1018
    • /
    • 1996
  • The annealing effects of Au/Te/Au/n-GaAs structure was investigated by using x-ray diffraction, scanning electron microscope, the specific contact resistance and I-V measurement. Increasing the annealing temperature, the intensity of Au-Ga peak by X-ray diffraction was increased. The Ga$\_$2/Te$\_$3/peak got evident for the samples annealed at 400.deg. C and GaAs peak by recrystallization appeared for the samples annealed at 500.deg. C. The variation from the schottky to low resistance contact was confirmed by I-V curve. The lowest value of the specific contact resistance of the samples annealed at 500.deg. C was 3.8*10$\^$-5/.ohm.-cm$\^$2/ but the value increased above 600.deg. C.

  • PDF

Characteristics of $In_xGa_{1-x}N/GaN$ single quantum well grown by MBE

  • Kang, T.W.;Kim, C.O.;Chung, G.S;Eom, K.S.;Kim, H.J.;Won, S.H.;Park, S.H.;Yoon, G.S.;Lee, C. M.;Park, C.S.;Chi, C.S.;Lee, H.Y.;Yoon, J.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.15-19
    • /
    • 1998
  • Structural and optical properties of $In_xGa_{1-X}N$ as well as $In_{0.1}Ga_{0.9}N$/GaN single quantum we11 (SQW) grown on sapphire (0001) substrate with an based GaN using rf-plasma assisted MBE have been investigated. The quality of the InXGal.,N fdm was improved as the growth temperature increased. In PL measurements at low temperatures, the band edge emission peaks of $In_xGa_{1-X}N$ was shifted to red region as an indium cell and substrate temperature increased. For $In_{0.1}Ga_{0.9}N$/GaN SQW, the optical emission energy has blue shift about 15meV in PL peak, due to the confined energy level in the well region. And, the FWHM of the $In_{0.1}Ga_{0.9}N$/GaN SQW was larger than that of the bulk Ino,la.9N films. The broadening of FWHM can be explained either as non-uniformity of Indium composition or the potential fluctuation in the well region. Photoconductivity (PC) decay measurement reveals that the optical transition lifetimes of the SQW measured gradually increased with temperatures.

  • PDF

Relative Absorption Edges of GaN/InGaN/GaN Single Quantum Wells and InGaN/GaN Heterostructures by Metalorganic Chemical Vapor Deposition (유기금속화학기상증착법으로 성장된 GaN/InGaN/GaN 단양자 우물층과 InGaN/GaN 이종접합 구조의 광학적 특징)

  • Kim, Je-Won;Son, Chang-Sik;Jang, Yeong-Geun;Choe, In-Hun;Park, Yeong-Gyun;Kim, Yong-Tae;Ambacher, O.;Ctutzmann, M.
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.42-45
    • /
    • 1999
  • The room temperature optical transmission spectra of GaN /InGaN/GaN single quantum wells (SQW) and InGaN/GaN heterostructures grwon by low pressure metalorganic chemical vapor deposition have been measured. The dependence of the absorption edges of the GaN/InGaN/GaN SQW on the well width has been determined from the transmission spectra. The result shows that the absorption edge of GaN/InGaN/GaN SQW shifts towards lower energy as increasing the well width. The dependence of the absorption edges of the InGaN/GaN heterostructures on InN mole fraction has also been determined from the transmission spectra. The result is compared with calculated values obtained from Vegards's laws. Our result shows a good agreement with the calculated values.

  • PDF

Structural studies of $Mn^+$ implanted GaN film

  • Shi, Y.;Lin, L.;Jiang, C.Z.;Fan, X.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.56-59
    • /
    • 2003
  • Wurtzite GaN films are grown by low-pressure MOCVD on (0001)-plane sapphire substrates. The GaN films have a total thickness of 4 $\mu$m with a surface Mg-doped p-type layer, which has a thickness of 0.5 $\mu$m. 90k eV $Mn^{+}$ ions are implanted into the GaN films at room temperature with doses ranging from $1 \times10^{15}$ to $1 \times 10^{16}\textrm{cm}^{-2}$. After an annealing step at $770^{\circ}C$ in flowing $N_2$, the structural characteristics of the $Mn^{+}$ implanted GaN films are studied by X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and atomic force microscopy (AFM). The structural and morphological changes brought about by $Mn^{+}$ implantation and annealing are characterized.

Synthesis and Optical Property of GaN Powder Using an Ultrasonic Spray Pyrolysis Process and Subsequent Nitridation Treatment (초음파 분무 열분해 공정과 질화처리를 이용한 GaN 분말의 합성과 광학적 성질)

  • Ji, Myeong-Jun;Yoo, Jae-Hyun;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.482-486
    • /
    • 2018
  • Despite numerous advances in the preparation and use of GaN, and many leading-edge applications in lighting technologies, the preparation of high-quality GaN powder remains a challenge. Ammonolytic preparations of polycrystalline GaN have been studied using various precursors, but all were time-consuming and required high temperatures. In this study, an efficient and low-temperature method to synthesize high-purity hexagonal GaN powder is developed using sub-micron $Ga_2O_3$ powder as a starting material. The sub-micron $Ga_2O_3$ powder was prepared by an ultrasonic spray pyrolysis process. The GaN powder is synthesized from the sub-micron $Ga_2O_3$ powder through a nitridation treatment in an $NH_3$ flow at $800^{\circ}C$. The characteristics of the synthesized powder are systematically examined by X-ray diffraction, scanning and transmission electron microscopy, and UV-vis spectrophotometer.

Investigations of Pd Based hybrid ohmic contacts to high-low doped n-type GaAs

  • Baik, Hong-Koo;Kwak, Joon-Seop
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.231-236
    • /
    • 1997
  • To improve electrical properties and uniformity of high-low doped n-type GaAs, new ohmic contacts with a low-resistance and the superior uniformity was developed using a concept of hybrid ohmic contact. The hybrid ohmic contact displayed good surface and interface morphology and had minimum contact resistivity of 3${\times}$10-6 $\Omega$$\textrm{cm}^2$ in a wide annealing temperature ranged from 340$^{\circ}C$ to 420$^{\circ}C$, which was much wider than that of conventional ohmic contacts. The microstructural analysis showed that the Pd/Ge ohmic contact at low annealing temperature (∼300$^{\circ}C$) and also annealing temperature (∼400$^{\circ}C$), resulting ij hybrid ohmic contacts.

  • PDF

Electron Spin Transition Line-width of Mn-doped Wurtzite GaN Film for the Quantum Limit

  • Park, Jung-Il;Lee, Hyeong-Rag;Lee, Su-Ho;Hyun, Dong-Geul
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • Starting with Kubo's formula and using the projection operator technique introduced by Kawabata, EPR lineprofile function for a $Mn^{2+}$-doped wurtzite structure GaN semiconductor was derived as a function of temperature at a frequency of 9.49 GHz (X-band) in the presence of external electromagnetic field. The line-width is barely affected in the low-temperature region because there is no correlation between the resonance fields and the distribution function. At higher temperature the line-width increases with increasing temperature due to the interaction of electrons with acoustic phonons. Thus, the present technique is considered to be more convenient to explain the resonant system as in the case of other optical transition systems.