DOI QR코드

DOI QR Code

Electron Spin Transition Line-width of Mn-doped Wurtzite GaN Film for the Quantum Limit

  • Park, Jung-Il (Nano-Physics and Technology Laboratory, Department of Physics, Kyungpook National University) ;
  • Lee, Hyeong-Rag (Nano-Physics and Technology Laboratory, Department of Physics, Kyungpook National University) ;
  • Lee, Su-Ho (Department of Electrical Engineering, Dong-A University) ;
  • Hyun, Dong-Geul (Department of Science Education, Teachers' College, Jeju National University)
  • Received : 2011.10.26
  • Accepted : 2012.01.18
  • Published : 2012.03.31

Abstract

Starting with Kubo's formula and using the projection operator technique introduced by Kawabata, EPR lineprofile function for a $Mn^{2+}$-doped wurtzite structure GaN semiconductor was derived as a function of temperature at a frequency of 9.49 GHz (X-band) in the presence of external electromagnetic field. The line-width is barely affected in the low-temperature region because there is no correlation between the resonance fields and the distribution function. At higher temperature the line-width increases with increasing temperature due to the interaction of electrons with acoustic phonons. Thus, the present technique is considered to be more convenient to explain the resonant system as in the case of other optical transition systems.

Keywords

References

  1. T. Dietl and H. Ohno, MRS Bull. 714 (2003).
  2. T. Dietl, in Proceedings 27th International Conference on the Physics of Semiconductors, edited by C. G. V. d. W. J. Menendez, AIP, Melville, New York (2005) p. 56.
  3. C. Liu, F. Yun, and H. Morkoc. J. Mater. Sci. 16, 555 (2005).
  4. S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, and L. A. Boather, J. Appl. Phys. 93, 1 (2003). https://doi.org/10.1063/1.1517164
  5. G. Cong, Y. Lu, W. Peng, X. Liu, X. Wang, and Z. Wang, J. Cryst. Growth 276, 381 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.419
  6. K. Engl, M. Beer, N. Gmeinwieser, U. T. Schwarz, J. Zweck, W. Wegscheider, S. Miller, A. Miler, H. J. Lugauer, G. Bruderl, A. Lell, and V. Harle, J. Cryst. Growth 289, 6 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.115
  7. Electron Paramagnetic Resonance of Transition Ions, A. Abragam and B. Bleaney, Clarendon Press, Oxford (1970).
  8. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957). https://doi.org/10.1143/JPSJ.12.570
  9. H. Mori, Prog. Theor. Phys. 34, 399 (1965). https://doi.org/10.1143/PTP.34.399
  10. A. Kawabata, J. Phys. Soc. Jpn. 29, 902 (1970). https://doi.org/10.1143/JPSJ.29.902
  11. J. I. Park, J. Y. Sug, and H. R. Lee, J. Kor. Phys. Soc. 51, 623 (2007). https://doi.org/10.3938/jkps.51.623
  12. J. I. Park, J. Y. Sug, and H. R. Lee, J. Kor. Phys. Soc. 58, 1644 (2011). https://doi.org/10.3938/jkps.58.1644
  13. J. Y. Sug, Phys. Rev. B 64, 235210 (2001). https://doi.org/10.1103/PhysRevB.64.235210
  14. J. Y. Sug, Phys. Rev. E 55, 314 (1997). https://doi.org/10.1103/PhysRevE.55.314
  15. W. E. Carlos, J. A. Freitas, Jr., and J. N. Kuznia, Phys. Rev. B 24, 17878 (1993).
  16. T. Graf, M. Gjukic, M. Hermann, M. S. Brandt, and M. Stutzmann, Phys. Rev. B 67, 165315 (2003). https://doi.org/10.1103/PhysRevB.67.165315
  17. J. Schneider and Z. Naturforsch. A 17A, 189 (1962).
  18. J. I. Park, H. K. Lee, and H. R. Lee, J. Magnetics 16, 108 (2011). https://doi.org/10.4283/JMAG.2011.16.2.108
  19. T. W. Kim and J. K. Oh, J. Magnetics 13, 43 (2008). https://doi.org/10.4283/JMAG.2008.13.2.043