Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.6.482

Synthesis and Optical Property of GaN Powder Using an Ultrasonic Spray Pyrolysis Process and Subsequent Nitridation Treatment  

Ji, Myeong-Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Yoo, Jae-Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.25, no.6, 2018 , pp. 482-486 More about this Journal
Abstract
Despite numerous advances in the preparation and use of GaN, and many leading-edge applications in lighting technologies, the preparation of high-quality GaN powder remains a challenge. Ammonolytic preparations of polycrystalline GaN have been studied using various precursors, but all were time-consuming and required high temperatures. In this study, an efficient and low-temperature method to synthesize high-purity hexagonal GaN powder is developed using sub-micron $Ga_2O_3$ powder as a starting material. The sub-micron $Ga_2O_3$ powder was prepared by an ultrasonic spray pyrolysis process. The GaN powder is synthesized from the sub-micron $Ga_2O_3$ powder through a nitridation treatment in an $NH_3$ flow at $800^{\circ}C$. The characteristics of the synthesized powder are systematically examined by X-ray diffraction, scanning and transmission electron microscopy, and UV-vis spectrophotometer.
Keywords
$Ga_2O_3$; ultrasonic spray pyrolysis; nitridation; GaN powder;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Han, S. Fan, Q. Li and Y. Hu: Science, 277 (1997) 1287.   DOI
2 J. K. Sprenger, A. S. Cavanagh, H. Sun, K. J. Wahl, A. Roshko and S. M. George: Chem. Mater., 28 (2016) 5282.   DOI
3 W. Utsumi, H. Saitoh, H. Kaneko, T. Watanuki, K. Aoki and O. Shimomura: Nat. Mater., 2 (2003) 735.   DOI
4 R. Dwilinski, R. Doradzinski, J. Garczynski, L.P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi and H. Hayashi: J. Cryst. Growth, 310 (2008) 3911.   DOI
5 Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami and K. Katayama: Appl. Phys. Express, 2 (2009) 082101.   DOI
6 Y. I. Kim, J. Li, J. P. Zhang and R. Seshadri: Solid State Sci., 13 (2011) 216.   DOI
7 Q. Bao, H. Sawayama, T. Hashimoto, F. Sato, K. Hazu, Y. Kagamitani, T. Ishinabe, M. Saito, R. Kayano, D. Tomida, K. Qiao, S. F. Chichibu, C. Yokoyama and T. Ishiguro: CrystEngComm., 14 (2012) 3351.   DOI
8 C. M. Balkas and R. F. Davis: J. Am. Ceram. Soc., 79 (1996) 2309.   DOI
9 W. S. Jung: Mater. Lett., 57 (2002) 110.   DOI
10 L. Grocholl, J. Wang and E. G. Gillan: Chem. Mater., 13 (2001) 4290.   DOI
11 K. Sardar, M. Dan, B. Schwenzer and C. N. R. Rao: J. Mater. Chem., 15 (2005) 2175   DOI
12 H. Wu, J. Hunting, K. Uheda, L. Lepak, P. Konkapaka, F. J. DiSalvo and M. G. Spencer: J. Cryst. Growth, 279 (2005) 303.   DOI
13 G. L. Messing, S. C. Zhang, G. V. Jayanthi: J. Am. Ceram. Soc., 76 (1993) 2707.   DOI
14 J. H. Bang and K. S. Suslick: Adv. Mater., 22 (2010) 1039.   DOI
15 A. B. Murphy: Sol. Energy Mater. Sol. Cells, 91 (2007) 1326.   DOI
16 M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo and Z. Mi: Nat. Commun., 5 (2014) 3825.   DOI
17 P. Kubelka and F. Munk: Z. Tech. Phys., 12 (1931) 593.
18 T. Oshima, T. Nakazono, A. Mukai and A. Ohtomo: J. Cryst. Growth, 359 (2012) 60.   DOI