Browse > Article
http://dx.doi.org/10.4283/JMAG.2012.17.1.013

Electron Spin Transition Line-width of Mn-doped Wurtzite GaN Film for the Quantum Limit  

Park, Jung-Il (Nano-Physics and Technology Laboratory, Department of Physics, Kyungpook National University)
Lee, Hyeong-Rag (Nano-Physics and Technology Laboratory, Department of Physics, Kyungpook National University)
Lee, Su-Ho (Department of Electrical Engineering, Dong-A University)
Hyun, Dong-Geul (Department of Science Education, Teachers' College, Jeju National University)
Publication Information
Abstract
Starting with Kubo's formula and using the projection operator technique introduced by Kawabata, EPR lineprofile function for a $Mn^{2+}$-doped wurtzite structure GaN semiconductor was derived as a function of temperature at a frequency of 9.49 GHz (X-band) in the presence of external electromagnetic field. The line-width is barely affected in the low-temperature region because there is no correlation between the resonance fields and the distribution function. At higher temperature the line-width increases with increasing temperature due to the interaction of electrons with acoustic phonons. Thus, the present technique is considered to be more convenient to explain the resonant system as in the case of other optical transition systems.
Keywords
electron paramagnetic resonance; projection operator; $^{55}Mn$; GaN; line-width; spin Hamiltonian; wurtzite structure;
Citations & Related Records
연도 인용수 순위
1 T. Dietl and H. Ohno, MRS Bull. 714 (2003).
2 T. Dietl, in Proceedings 27th International Conference on the Physics of Semiconductors, edited by C. G. V. d. W. J. Menendez, AIP, Melville, New York (2005) p. 56.
3 C. Liu, F. Yun, and H. Morkoc. J. Mater. Sci. 16, 555 (2005).
4 S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, and L. A. Boather, J. Appl. Phys. 93, 1 (2003).   DOI   ScienceOn
5 G. Cong, Y. Lu, W. Peng, X. Liu, X. Wang, and Z. Wang, J. Cryst. Growth 276, 381 (2005).   DOI   ScienceOn
6 K. Engl, M. Beer, N. Gmeinwieser, U. T. Schwarz, J. Zweck, W. Wegscheider, S. Miller, A. Miler, H. J. Lugauer, G. Bruderl, A. Lell, and V. Harle, J. Cryst. Growth 289, 6 (2006).   DOI   ScienceOn
7 Electron Paramagnetic Resonance of Transition Ions, A. Abragam and B. Bleaney, Clarendon Press, Oxford (1970).
8 R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).   DOI
9 H. Mori, Prog. Theor. Phys. 34, 399 (1965).   DOI
10 A. Kawabata, J. Phys. Soc. Jpn. 29, 902 (1970).   DOI
11 J. I. Park, J. Y. Sug, and H. R. Lee, J. Kor. Phys. Soc. 51, 623 (2007).   DOI   ScienceOn
12 J. I. Park, J. Y. Sug, and H. R. Lee, J. Kor. Phys. Soc. 58, 1644 (2011).   DOI
13 J. Y. Sug, Phys. Rev. B 64, 235210 (2001).   DOI   ScienceOn
14 J. I. Park, H. K. Lee, and H. R. Lee, J. Magnetics 16, 108 (2011).   DOI   ScienceOn
15 T. W. Kim and J. K. Oh, J. Magnetics 13, 43 (2008).   DOI   ScienceOn
16 J. Schneider and Z. Naturforsch. A 17A, 189 (1962).
17 J. Y. Sug, Phys. Rev. E 55, 314 (1997).   DOI   ScienceOn
18 W. E. Carlos, J. A. Freitas, Jr., and J. N. Kuznia, Phys. Rev. B 24, 17878 (1993).
19 T. Graf, M. Gjukic, M. Hermann, M. S. Brandt, and M. Stutzmann, Phys. Rev. B 67, 165315 (2003).   DOI   ScienceOn