• Title/Summary/Keyword: Low Rate ADC

Search Result 62, Processing Time 0.033 seconds

Design of Receiver in High-Speed digital Modem for High Resolution MRI (고속 디지털 MRI 모뎀 수신기 설계)

  • 염승기;양문환;김대진;정관진;김용권;권영철;최윤기
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.69-72
    • /
    • 2000
  • This paper shows the more improved design of MRI receiver compared to conventional one based on Elscint Spectrometer. At first, the low-cost ADC is 16 bits, 3MHz sampling A/D converter Comparing to conventional one with signal bits of 14 bits, this device with those of 16 bits helps getting Improved the image resolution improved. If frequency is designed centering around 7.6 MHz to be satisfied in 10 MHz of maximum input bandwidth of ADC. For 1st demodulation, fixed IF is used for the purpose of the implementing multi nuclei system. Control parts & partial digital parts are integrated on one chip(FPGA). In DDC(Digital Down Converter), we got required bandwidth of LPF by controlling its decimation rate. With above considerations, we designed optimal receiver for high resolution imaging to be implemented through PC interface & experimental test of receiver of MRI after receiver's fabrication.

  • PDF

A 12b 200KHz 0.52mA $0.47mm^2$ Algorithmic A/D Converter for MEMS Applications (마이크로 전자 기계 시스템 응용을 위한 12비트 200KHz 0.52mA $0.47mm^2$ 알고리즈믹 A/D 변환기)

  • Kim, Young-Ju;Chae, Hee-Sung;Koo, Yong-Seo;Lim, Shin-Il;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.48-57
    • /
    • 2006
  • This work describes a 12b 200KHz 0.52mA $0.47mm^2$ algorithmic ADC for sensor applications such as motor controls, 3-phase power controls, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with recycling techniques to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels for high integration employs a folded-cascode architecture to achieve a required DC gain and a sufficient phase margin. A signal insensitive 3-D fully symmetrical layout with critical signal lines shielded reduces the capacitor and device mismatch of the MDAC. The improved switched bias power-reduction techniques reduce the power consumption of analog amplifiers. Current and voltage references are integrated on the chip with optional off-chip voltage references for low glitch noise. The employed down-sampling clock signal selects the sampling rate of 200KS/s or 10KS/s with a reduced power depending on applications. The prototype ADC in a 0.18um n-well 1P6M CMOS technology demonstrates the measured DNL and INL within 0.76LSB and 2.47LSB. The ADC shows a maximum SNDR and SFDR of 55dB and 70dB at all sampling frequencies up to 200KS/s, respectively. The active die area is $0.47mm^2$ and the chip consumes 0.94mW at 200KS/s and 0.63mW at 10KS/s at a 1.8V supply.

Terabit-Per-Second Optical Super-Channel Receiver Models for Partial Demultiplexing of an OFDM Spectrum

  • Reza, Ahmed Galib;Rhee, June-Koo Kevin
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.334-339
    • /
    • 2015
  • Terabit-per-second (Tb/s) transmission capacity for the next generation of long-haul communication networks can be achieved using multicarrier optical super-channel technology. In an elastic orthogonal frequency division multiplexing (OFDM) super-channel transmission system, demultiplexing a portion of an entire spectrum in the form of a subband with minimum power is critically required. A major obstacle to achieving this goal is the analog-to-digital converter (ADC), which is power-hungry and extremely expensive. Without a proper ADC that can work with low power, it is unrealistic to design a 100G coherent receiver suitable for a commercially deployable optical network. Discrete Fourier transform (DFT) is often seen as a primary technique for understanding partial demultiplexing, which can be attained either optically or electronically. If fairly comparable performance can be achieved with an all-optical DFT circuit, then a solution independent of data rate and modulation format can be obtained. In this paper, we investigate two distinct OFDM super-channel receiver models, based on electronic and all-optical DFT-technologies, for partial carrier demultiplexing in a multi-Tb/s transmission system. The performance comparison of the receivers is discussed in terms of bit-error-rate (BER) performance.

High accuracy, Low Power Spread Spectrum Clock Generator to Reduce EMI for Automotive Applications

  • Lee, Dongsoo;Choi, Jinwook;Oh, Seongjin;Kim, SangYun;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.404-409
    • /
    • 2014
  • This paper presents a Spread Spectrum Clock Generator (SSCG) based on Relaxation oscillator using Up/Down Counter. The current is controlled by a counter and the spread spectrum of the Relaxation Oscillator. A Relaxation Oscillator with temperature compensation using the BGR and ADC is presented. The current to determine the frequency of the Relaxation Oscillator can be controlled. The output frequency of the temperature can be compensated by adjusting the current according to the temperature using the code that is the output from the ADC and BGR. EMI Reduction of SSCG is 11 dB, and Spread down frequency is 150 kHz. The current consumption is $600{\mu}A$ from 5V and the operating frequency is from 2.3 MHz to 5.75 MHz. The rate of change of the output frequency with temperature was approximately ${\pm}1%$. The SSCG is fabricated in a 0.35um CMOS process with active area $250um{\times}440um$.

Symbol Synchronization Technique using Bit Decision Window for Non-Coherent IR-UWB Systems (Bit Decision 윈도우를 이용한 Noncoherent IR-UWB 수신기의 심벌 동기에 관한 연구)

  • Lee, Soon-Woo;Park, Young-Jin;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.15-21
    • /
    • 2007
  • In this paper, we propose a technique of a practical symbol acquisition and tracking using a low complex ADC and simple digital circuits for noncoherent asynchronous impulse-radio-based Ultra Wideband (IR-UWB) receiver based on energy detection. Compared to previous approaches of detecting an exact acquisition time that require much hardware resource, the proposed technique is to detect the target symbol by finding the symbol acquisition interval per symbol with a target symbo, thus the complexity of the complete signal processing and power consumption by ADC are reduced. To do this, we define the bit decision window (BDW) and analyze the relation between SNR, hardware resource, size of BDW and BER(Bit Error Rate). Using the results, the optimum BDW size for the minimum BER with limited hardware resource is selected. The proposed synchronization technique is verified with an aid of a simulator programmed by considering practical impulse channels.

Implementation of Chaotic UWB Systems for Low Rate WPAN

  • Lee, Cheol-Hyo;Kim, Jae-Young;Kim, Young-Kkwan;Choi, Sun-Kyu;Jang, Ui-Gi
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.339-342
    • /
    • 2005
  • In order to support ultrawide-band signal generation for low rate WPAN, several types of signal generation mechanisms are suggested such as Chaos, Impluse, and Chirp signals by the activity of IEEE 802.15.4a. The communication system applied chaos theory may have ultrawide-band characteristics with spread spectrum and immunity from multipath effect. In order to use the advantage of chaotic signal generation, we introduce the system implementation of communication and networking systems with the chaos UWB signal. This system may be composed of mainly three parts in hardware architecture : RF transmission with chaotic signal generation, signal receiver using amplifiers and filters, and 8051 & FPGA unit. The most difficult part is to implement the chaotic signal generator and build transceiver with it. The implementation of the system is devidced into two parts i.e. RF blocks and digital blocks with amplifiers, filters, ADC, 8051 processor, and FPGA. In this paper, we introduce the system block diagram for chaotic communications. Mainly the RF block is important for the system to have good performance based on the chaotic signal generator. And the main control board functions for controlling RF blocks, processing Tx and Rx data, and networking in MAC layer.

  • PDF

A 4×32-Channel Neural Recording System for Deep Brain Stimulation Systems

  • Kim, Susie;Na, Seung-In;Yang, Youngtae;Kim, Hyunjong;Kim, Taehoon;Cho, Jun Soo;Kim, Jinhyung;Chang, Jin Woo;Kim, Suhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.129-140
    • /
    • 2017
  • In this paper, a $4{\times}32$-channel neural recording system capable of acquiring neural signals is introduced. Four 32-channel neural recording ICs, complex programmable logic devices (CPLDs), a micro controller unit (MCU) with USB interface, and a PC are used. Each neural recording IC, implemented in $0.18{\mu}m$ CMOS technology, includes 32 channels of analog front-ends (AFEs), a 32-to-1 analog multiplexer, and an analog-to-digital converter (ADC). The mid-band gain of the AFE is adjustable in four steps, and have a tunable bandwidth. The AFE has a mid-band gain of 54.5 dB to 65.7 dB and a bandwidth of 35.3 Hz to 5.8 kHz. The high-pass cutoff frequency of the AFE varies from 18.6 Hz to 154.7 Hz. The input-referred noise (IRN) of the AFE is $10.2{\mu}V_{rms}$. A high-resolution, low-power ADC with a high conversion speed achieves a signal-to-noise and distortion ratio (SNDR) of 50.63 dB and a spurious-free dynamic range (SFDR) of 63.88 dB, at a sampling-rate of 2.5 MS/s. The effectiveness of our neural recording system is validated in in-vivo recording of the primary somatosensory cortex of a rat.

Design of a CMOS Single Bit 3rd Order Delta-Sigma Modulator with Switched Operational Amplifier (스위치드 연산증폭기를 이용한 CMOS 단일비트 3차 델타시그마 변조기 설계)

  • Lee, Han-Ul;Dai, Shi;Yoo, Tai-Kyung;Lee, Keon;Yoon, Kwang-Sub;Lee, Sang-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.712-719
    • /
    • 2012
  • This paper presents Single-bit Third order Delta-Sigma Modulator, which can be applied to the Low speed High resolution ADC in Audio signal Process System. Whereas the Operational Amplifier in modulator consumed static power dissipation in operating, this modulator used Switching on/off techniques, which makes the Power dissipation of the modulator reduced. Also proposed modulator minimizes frequency characteristic variation by optimizing switch position. And this modulator chooses Single-bit type to guarantee stability. The designed ADC went through 0.35um CMOS n-well 1-poly 4-metal process to be a final product, and the final product has shown 17.1mW of power dissipation with 3.3V of Supply Voltage, 6.4MHz of conversion rate. And 84.3dB SNDR and 13.5bit ENOB with 20KHz of input frequency.

Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Cerebral Venous Thrombosis : A Meta-Analysis

  • Lv, Bin;Jing, Feng;Tian, Cheng-lin;Liu, Jian-chao;Wang, Jun;Cao, Xiang-yu;Liu, Xin-feng;Yu, Sheng-yuan
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.3
    • /
    • pp.418-426
    • /
    • 2021
  • Objective : A role of diffusion-weighted imaging (DWI) in the diagnosis of cerebral venous thrombosis (CVT) is not well-understood. This study evaluates the effectiveness of DWI in the diagnosis of CVT. Methods : Literature search was conducted in electronic databases for the identification of studies which reported the outcomes of patients subjected to DWI for CVT diagnosis. Random-effects meta-analyses were performed to achieve overall estimates of important diagnostic efficiency indices including hyperintense signal rate, the sensitivity and specificity of DWI in diagnosing CVT, and the apparent diffusion coefficient (ADC) of DWI signal areas and surrounding tissue. Results : Nineteen studies (443 patients with 856 CVTs; age 40 years [95% confidence interval (CI), 33 to 43]; 28% males [95% CI, 18 to 38]; symptom onset to DWI time 4.6 days [95% CI, 2.3 to 6.9]) were included. Hyperintense signals on DWI were detected in 40% (95% CI, 26 to 55) of the cases. The sensitivity of DWI for detecting CVT was 22% (95% CI, 11 to 34) but specificity was 98% (95% CI, 95 to 100). ADC values were quite heterogenous in DWI signal areas. However, generally the ADC values were lower in DWI signal areas than in surrounding normal areas (mean difference-0.33×10-3 ㎟/s [95% CI, -0.44 to -0.23]; p<0.00001). Conclusion : DWI has a low sensitivity in detecting CVT and thus has a high risk of missing many CVT cases. However, because of its high specificity, it may have supporting and exploratory roles in CVT diagnosis.

Smart Sensor for Machine Condition Monitoring Using Wireless LAN (무선 랜 통신을 이용한 기계 상태감시용 스마트 센서)

  • Tae, Sung-Do;Son, Jong-Duk;Yang, Bo-Suk;Kim, Dong-Hyen
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.523-529
    • /
    • 2009
  • Smart sensor is known as intelligent sensor, it is different with other conventional sensors in the case of intelligent system embedded on it. Smart sensor has many benefits e.g. low-cost in usage, self-decision and self-diagnosis abilities. This sensor consists of perception element(sensing element), signal processing and technology of communication. In this work, a bridge and structure of smart sensor has been investigated to be capable to condition monitoring routine. This investigation involves low power consumption, software programming, fast data acquisition ability, and authoritativeness warranty. Moreover, this work also develops smart sensor to be capable to perform high sampling rate, high resolution of ADC, high memory capacity, and good communication for data transfer. The result shows that the developed smart sensor is promising to be applied to various industrial fields.