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* Short Paper 

 

Abstract: This paper presents a Spread Spectrum Clock Generator (SSCG) based on Relaxation 
oscillator using Up/Down Counter. The current is controlled by a counter and the spread spectrum 
of the Relaxation Oscillator. A Relaxation Oscillator with temperature compensation using the 
BGR and ADC is presented. The current to determine the frequency of the Relaxation Oscillator 
can be controlled. The output frequency of the temperature can be compensated by adjusting the 
current according to the temperature using the code that is the output from the ADC and BGR. EMI 
Reduction of SSCG is 11 dB, and Spread down frequency is 150 kHz. The current consumption is 
600 μA from 5V and the operating frequency is from 2.3 MHz to 5.75 MHz. The rate of change of 
the output frequency with temperature was approximately ±1 %. The SSCG is fabricated in a 
0.35um CMOS process with active area 250um x 440um.     
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1. Introduction 

Recently, the continuous shrinking of the device 
feature sizes introduced by the aggressive technology 
scaling trends, and the increasing complexity of digital ICs, 
require higher operating frequencies with faster clock rates. 
ICs are becoming prolific Electro Magnetic Interference 
(EMI) generators because of the high-frequency square-
waves rich in harmonics and distributed throughout the die. 
Until recently, however, the circuit, package, and board 
designers did not give much consideration to EM 
emissions and interference. Traditionally, the problem of 
reducing on-chip EMI has been tested, and implemented 
by trial-and-error, without a structured approach [1]. On-
chip reference oscillators are required for low-cost one-
chip applications including biomedical sensors, 
microcomputers, high-speed interfaces such as DDR I/F 
and HDMI, and SoCs. RC oscillators, including relaxation 
oscillators, were developed to realize on-chip oscillators 
with a standard CMOS process [2]. The oscillator used in 
the analog circuit can be divided into two main circuits, 
which are the LC oscillator and RC oscillator. The LC 
oscillator and RC oscillator are used in high frequency 
band and low frequency band, respectively. Because the 

Phased Locked Loop (PLL) is not used in low frequency 
band, the characteristics of the oscillator itself should be 
highly reliable. 

The percentage of electronic devices in cars is 
increasing. The EMI to other electronic devices can cause 
a malfunction. Because a large amount of EMI might 
affect each electronics device, it is essential to reduce the 
EMI emissions in each device [3]. 

The remainder of this paper is organized as follows. In 
Section 2, the Block diagram of the Proposed Relaxation 
Oscillator is described. Section 3 describes the building 
blocks. Section 4 presents the experimental results from 
the 0.35 μm CMOS implementation and section 5 presents 
the concluding. 

2. Proposed Relaxation Oscillator 

Fig. 2 shows the block diagram of the Relaxation 
Oscillator with Temperature Compensation Circuit (TCC) 
and the Spread Spectrum Clock Generator (SSCG). The 
TCC is composed of a Proportional to Absolute 
Temperature (PTAT) Generator, a 4-bit ADC, a Decoder, 
and Reference Generator using Bandgap Reference (BGR). 
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The SSCG is composed of a Relaxation Oscillator, a 
UP/DN Counter, and a 16-Divider. The SSCG generates 
the counter signal by the self-clock feedback and controls 
the frequency of the Relaxation Oscillator. The input of 
UP/DN Counter uses clocks that are 16-divided to operate 
the counter. The automotive IC must have high reliability 
in any circumstances. The EMI which can affect each 
block and causes the wrong operation needs to be reduced.  

3. Building Blocks 

3.1 Relaxation Oscillator 
Fig. 3 shows a schematic of the Relaxation Oscillator. 

The structure of the proposed oscillator generates a 

frequency by charging and discharging the current of the 
capacitor continuously. Using the SR latch, charge and 
discharge, set-reset occur repeatedly to have a structure 
that is applied to the comparator inputted in to the SR latch. 
The output of the capacitor is again the charged and 
discharged voltage. Using the logic to generate a different 
frequency from the other oscillator, the structure is a 
structure suitable to consume less current, and generate a 
low frequency. 

Tramp1 = Tramp2 ≒ 2TOSC. The frequency of oscillation is 
given by [4] :  

 

 
1

ramp
source

ramp

dV
C I

dt
=                    (1) 

 1( )
2osc

osc ramp

If Hz
t CV

∴ ≈ =               (2) 

 
The frequency of the Relaxation Oscillator is 

determined by the current, capacitance, and value of VREF 
in Eq. (2). 

3.2 Spread Spectrum Clock Generator 
Fig. 5 shows the block diagram of the Spread Spectrum 

Clock Generator (SSCG). The proposed Spread Spectrum 
Clock Oscillator generates the counter signal by the self-
clock feedback and controls the frequency of the 
Relaxation Oscillator. This is composed of a UP/DN 
Counter, 16-Divider, and Relaxation Oscillator. The SSCG 
can control the frequency by controlling the capacitor and 
the current bank. The PMOS Current bank composed by 6-
bit controls the current following the signals from the 

 
(a) 

 

 
(b) 

Fig. 1. (a) Block diagram, (b) Waveform of the 
Conventional Relaxation oscillator. 

 

Fig. 2. Block diagram of the Proposed Relaxation
Oscillator with temperature compensation and spread
spectrum Clock generator. 

 

Fig. 3. Schematic of the Relaxation Oscillator. 
 

Fig. 4. Controllable current source. 
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counter block to spread the spectrum of the Relaxation 
Oscillator. The 16-Divider is implemented by a series 
connection of four D flip-flops. 

Fig. 6 presents the simulation results of UP/DN 
Counter. The output codes of UP/DN Counter 
(I_CONT<5:0>) change from ‘0’ to the input code 
(COUNT_CONT<5:0>). Therefore, COUNT_CONT<5:0> 
control the spread range of the SSCG. 

Fig. 7 shows the Fast Fourier Transform (FFT) 
simulation result of the spread spectrum clock generator. 
Fig. 7(a) shows how to generate a fixed frequency as the 
oscillator in general when applying a fixed digital code to 
the counter which is shown in Fig. 5. Fig. 7(b) shows the 
frequency changes. The spectrum is spread, when applying 
a digital code that varies at the counter.  

3.3 Temperature Compensation 
Fig. 8 shows the block diagram of the Temperature 

Compensation Circuit (TCC). The TTC is composed of 
PTAT Generator, 4-bit Flash ADC, Decoder, and 
Reference generator. 

Fig. 9 shows the temperature compensation circuit. 
Lateral PNP transistors (Q1, Q2, and Q3) are used to 
implement the BGR [5]. Its output voltage can be derived 
as Eq. (3). 
 

 4
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where n is the area ratio of Q2 and Q1. 

The temperature coefficient can be derived as Eq. (4). 
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Fig. 5. Block diagram of SSCG. 
 

Fig. 6. Simulation result of the UP/DN Counter. 
 

 
(a) 

 

 
(b) 

Fig. 7. (a) Turn off, (b) Turn on of SSCG. 
 

Fig. 8. Block diagram of the Temperature Compensation.
 

 
Fig. 9. Schematic of the PTAT Generator. 
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where k is the Boltzmann constant. 
The PTAT Generator can be implemented by adjusting 

n and (R4/R3) from Eq. (4). 
Fig. 11 shows the Reference Generator which generates 

the reference voltage (VREF) of the Relaxation Oscillator. 
VREF is determined by the ratio of RREF1 and RREF2, as 
shown in the expression below [5] : 

 

 1

2
(1 )REF

REF BGR
REF

R
V V

R
= + ×                        (5) 

 
where VBGR is the output voltage of BGR. 

4. Experimental Results 

Fig. 12 shows the chip layout of the proposed 
relaxation oscillator with the temperature compensation 
and SSCG. This chip was fabricated with 2-poly 4-metal 
CMOS 0.35um process. The size of the relaxation 
oscillator with SSCG is 240 μm x 210 μm and the size of 
temperature compensation circuit is 550 μm x 280 μm. 

Fig. 13 shows the output frequency range of the 
Relaxation Oscillator by varying the CAP<3:0>. The 

figure shows the changing shapes of the frequency range 
according to the capacitance variation. Therefore, the 
frequency range of Relaxation Oscillator is from 2.3 MHz 
to 5.75 MHz. 

Fig. 14 shows the measurement results of the SSCG. 
The measurement results showed that the clock signal 
power decreased about 11 dB and the frequency spread 
was reduced to approximately 150 kHz. 

Fig. 15 presents the measurement results of 
temperature compensation. To verify the temperature 
compensation, CAP<3:0> was fixed to “0100” and both 
results were compared by turning on and off the 
temperature compensation circuit. As shown in the figure, 

Fig. 10. Output of PTAT and output code of ADC
according to the temperature variation. 

 

Fig. 11. Schematic of the Reference Generator. 

 

TCC

OSC. &
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Fig. 12. Chip micrograph. 
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Fig. 13. Output Frequency range of the Relaxation 
Oscillator according to CAP<3:0>. 
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Fig. 14. Measurement Results of the SSCG operation. 
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before the temperature compensation was adopted, 
approximately ± 28% output frequency error occurred 
when the temperature was varied from -40℃ to 135℃. By 
adopting the proposed temperature compensation using 
BGR and ADC under the same temperature condition, the  
output frequency error was reduced to have appoximately 
±1%. 

Table 1 lists the performance of the proposed SSCG. 
The current consumption is 600 μA from 5V and the 
operating frequency is ranged from 2.3 MHz to 5.75 MHz. 
the EMI Reduction of the SSCG is 11 dB, and the spread 
down frequency was 150 kHz. The rate of change of the 
output frequency with temperature was approximately 
±1%. 

5. Conclusion 

A Relaxation oscillator with temperature compensation 
and a Spread Spectrum Clock Generator (SSCG) using 
Up/Down Counter is presented. The current was controlled 
by the counter and spread spectrum of the Relaxation 
Oscillator. The Relaxation Oscillator with temperature 
compensation using BGR and ADC is presented. The 
current to determine the frequency of the Relaxation 
Oscillator can be controlled. The output frequency of the 
temperature could be compensated by adjusting the current 
according to the temperature using the code that is output 
from the ADC and BGR. The EMI Reduction of SSCG 
was 11 dB, and the spread down frequency was 150 kHz. 

The current consumption was 600 μA from 5V and the 
operating frequency ranged from 2.3 MHz to 5.75 MHz. 
The rate of change of the output frequency with 
temperature was approximately ±1 %. 
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Table 1. Performance Summary.  

 This work 
Process 0.35um CMOS 

Supply Voltage 5 V 
Frequency 2.3 ~ 5.75 MHz 

EMI Reduction 11 dB 
Spread Spectrum 3.75 % 

Accuracy < 1 % 
Temperature -40℃ ~ 135℃ 

Current Consumption 0.6 mA 

Chip Area 0.20 mm2 

(SSCG Core : 0.05 mm2) 
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