Browse > Article
http://dx.doi.org/10.5573/JSTS.2017.17.1.129

A 4×32-Channel Neural Recording System for Deep Brain Stimulation Systems  

Kim, Susie (Department of Electrical and Computer Engineering, Seoul National University)
Na, Seung-In (System LSI, Semiconductor Business Group, Samsung Electronics Co. Ltd.)
Yang, Youngtae (Department of Electrical and Computer Engineering, Seoul National University)
Kim, Hyunjong (Department of Electrical and Computer Engineering, Seoul National University)
Kim, Taehoon (Department of Electrical and Computer Engineering, Seoul National University)
Cho, Jun Soo (Department of Electrical and Computer Engineering, Seoul National University)
Kim, Jinhyung (Department of Neurosurgery, Yonsei University College of Medicine)
Chang, Jin Woo (Department of Neurosurgery, Yonsei University College of Medicine)
Kim, Suhwan (Department of Electrical and Computer Engineering, Seoul National University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.17, no.1, 2017 , pp. 129-140 More about this Journal
Abstract
In this paper, a $4{\times}32$-channel neural recording system capable of acquiring neural signals is introduced. Four 32-channel neural recording ICs, complex programmable logic devices (CPLDs), a micro controller unit (MCU) with USB interface, and a PC are used. Each neural recording IC, implemented in $0.18{\mu}m$ CMOS technology, includes 32 channels of analog front-ends (AFEs), a 32-to-1 analog multiplexer, and an analog-to-digital converter (ADC). The mid-band gain of the AFE is adjustable in four steps, and have a tunable bandwidth. The AFE has a mid-band gain of 54.5 dB to 65.7 dB and a bandwidth of 35.3 Hz to 5.8 kHz. The high-pass cutoff frequency of the AFE varies from 18.6 Hz to 154.7 Hz. The input-referred noise (IRN) of the AFE is $10.2{\mu}V_{rms}$. A high-resolution, low-power ADC with a high conversion speed achieves a signal-to-noise and distortion ratio (SNDR) of 50.63 dB and a spurious-free dynamic range (SFDR) of 63.88 dB, at a sampling-rate of 2.5 MS/s. The effectiveness of our neural recording system is validated in in-vivo recording of the primary somatosensory cortex of a rat.
Keywords
Analog front-end (AFE); analog-to-digital converter (ADC); action potential (AP); $4{\times}32$-channel; neural recording system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. S. J. Steyaert, W. M. C. Sansen and C. Zhongyuan, "A micropower low-noise monolithic instrumentation amplifier for medical purposes," IEEE J. Solid-State Circuits, vol. 22, no. 6, pp. 1392-1405, Dec. 1987.
2 B. Gosselin, A. E. Ayoub, J. F. Roy, M. Sawan, F. Lepore, A. Chaudhuri, and D. Guitton, "A mixedsignal multichip neural recording interface with bandwidth reduction," IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 3, pp. 129-141, Jun. 2009.   DOI
3 A.-J. Annema, B. Nauta, R. van Langevelde, and H. Tuinhout, "Analog circuits in ultra-deep-submicron CMOS," IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 132-141, Jan. 2005.   DOI
4 B. R. Gregoire and U.-K. Moon, "An over-60dB true rail-to-rail performance using correlated level shifting and an opamp with 30dB loop gain," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 540-541, 2008.
5 B. Murmann and B. E. Boser, "A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification," IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2040-2050, Dec. 2003.   DOI
6 S. Lee and B. Song, "Digital-domain calibration of multi-step analog-to-digital converter," IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1679-1688, Dec. 1992.   DOI
7 J. K. Fiorenza, T. Sepke, P. Holloway, C. G. Sodini and H. S. Lee, "Comparator-based switchedcapacitor circuits for scaled CMOS technologies," IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2658-2688, Dec. 2006.   DOI
8 J.-K. Woo, T. H. Kim, H. Lee, S. Kim, H. Lee and S. Kim, "A comparator-based cyclic analog-todigital converter with boosted preset voltage," in Proc. 2011 Int. Symp. Low Power Electronics and Design, pp. 199-204, 2011.
9 M. Azin, D. Guggenmos, S. Barbay, R. Nudo, and P. Mohseni, "A battery-powered activity-dependent intracortical microstimulation IC for brainmachine-brain interface," IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 731-745, Apr. 2011.   DOI
10 F. Shahrokhi, K. Abdelhalim, D. Serletis, P. L. Carlen, and R. Genov, "The 128-channel fully differential digital integrated neural recording and stimulation interface," IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 3, pp. 149-161, Jun. 2010.   DOI
11 S. Lewis, M. Russold, H. Dietl, R. Ruff, J. M. Cardona Audi, K.-P. Hoffmann, L. Abu-Saleh, D. Schroeder, W. H. Krautschneider, S. Westendorff, A. Gail, T. Meiners, and E. Kaniusas, "Fully implantable multi-channel measurement system for acquisition of muscle activity," IEEE Trans. Instrum. Meas., vol. 62, no. 7, pp. 1972-1981, Jul. 2013.   DOI
12 R. Sarpeshkar, W. Wattanapanitch, B. I. Rapoport, S. K. Arfin, M. W. Baker, S. Mandal and M. S. Fee, "Low-power circuits for brain-machine interfaces," in Proc. IEEE Int. Symp. Circuits and Systems, pp. 2086-2071, 2007.
13 R. Martins, S. Selberherr, and F. A. Vaz, "A CMOS IC for portable EEG acquisition systems," IEEE Trans. Instrum. Meas., vol. 47, no. 5, pp. 1191-1196, Oct. 1998.   DOI
14 Q. Huang, S. Chang, J. Peng, X. Mao, Y. Zhou, and H. Wang, "An implementation of SOPC-based neural monitoring system," IEEE Trans. Instrum. Meas., vol. 61, no. 9, pp. 2469-2475, Sep. 2012.   DOI
15 H. Bronte-Stewart, C. Barberini, M. M. Koop, B. C. Hill, J. M. Henderson, and B. Wingeier, "The STN beta-band profile in Parkinson's disease is stationary and shows prolonged attenuation after deep brain stimulation," Exp. Neurol., vol. 215, pp. 20-28, 2009.   DOI
16 T. O. Zander, M. Lehne, K. Ihme, S. Jatzev, J. Correia, C. Kothe, B. Picht and F. Nijboer, "A dry EEG-system for scientific research and braincomputer interfaces," Front. Neurosci., vol. 5, pp. 1-10, May 2011.
17 M. Shen, L. Lin, J. Chen, and C. Q. Chang, "A prediction approach for multichannel EEG signals modeling using local wavelet SVM," IEEE Trans. Instrum. Meas., vol. 59, no. 5, pp. 1485-1492, May 2010.   DOI
18 P. M. Sovilj, S. S. Milovancev, and V. Vujicic, "Digital stochastic measurement of a nonstationary signal with an example of EEG signal measurement," IEEE Trans. Instrum. Meas., vol. 60, no. 9, pp. 3230-3232, Sep. 2011.   DOI
19 S.-F. Liang, C.-E. Kuo, Y.-H. Hu, Y.-H. Hu, Y.-H. Pan, and Y.-H. Wang, "Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models," IEEE Trans. Instrum. Meas., vol. 61, no. 6, pp. 1649-1657, Jun. 2012.   DOI
20 L.-D. Liao, S.-L. Wu, C.-H. Liou, S.-W. Lu, S.-A. Chen, S.-F. Chen, L.-W. Ko, and C.-T. Lin, "A novel 16-channel wireless system for electroencephalography measurements with dry spring-loaded sensors" IEEE Trans. Instrum. Meas., vol. 63, no. 6, pp. 1545-1555, Jun. 2014.   DOI
21 Y. Su, C. R. Allen, D. Geng, D. Burn, U. Brechany, G. D. Bell, and R. Rowland, "3-D motion system ("data-gloves"): application for Parkinson's disease," IEEE Trans. Instrum. Meas., vol. 52, no. 3, pp. 662-674, Jun. 2003.   DOI
22 H.-G. Rhew, J. Jeong, J. A. Fredenburg, S. Dodani, P. G. Patil, and M. P. Flynn, "A fully selfcontained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management," IEEE J. Solid-State Circuits, vol. 49, no. 10, pp. 2213-2227, Oct. 2014.   DOI
23 G. Andria, F. Attivissimo, N. Giaquinto, A. M. L. Lanzolla, L. Quagliarella, and N. Sasanelli, "Functional evaluation of handgrip signals for Parkinsonian patients," IEEE Trans. Instrum. Meas., vol. 55, no. 5, pp. 1467-1475, Oct. 2006.   DOI
24 H. S. Maberg, A. M. Lozano, V. Voon, H. E. McNeely, D. Seminowicz, C. Hamani, J. M. Schwalb, and S. H. Kennedy, "Deep brain stimulation for treatment-resistant depression," Neuron, vol. 45, no. 5, pp. 651-661, Mar. 2005.   DOI
25 S. Borromeo, J. A. Hernandez-Tamames, G. Luna, F. Machado, N. Malpica, and A. Toledano, "Objective assessment of olfactory function using functional magnetic resonance imaging (fMRI)," IEEE Trans. Instrum. Meas., vol. 59, no. 10, pp. 2602-2608, Oct. 2010.   DOI
26 K. Vonck, P. Boon, E. Achten, J. De Reuck, and J. Caemaert, "Longterm amygdalohippocampal stimulation for refractory temporal lobe epilepsy," Ann. Neurol., vol. 52, pp. 556-565, Nov. 2002.   DOI
27 C.-P. Young, S.-F. Liang, D.-W. Chang, Y.-C. Liao, F.-Z. Shaw, and C.-H. Hsieh, "A portable wireless online closed-loop seizure controller in freely moving rats," IEEE Trans. Instrum. Meas., vol. 60, no. 2, pp. 513-521, Feb. 2011.   DOI
28 J. Lee, H.-G. Rhew, J. R. Kipke, and M. P. Flynn, "A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC," IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1935-1945, Sep. 2010.   DOI
29 C. Qian, J. Shi, J. Parramon, and E. Sanchez-Sinencio, "A low-power configurable neural recording system for epileptic seizure detection," IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 4, pp. 499-512, Aug. 2013.   DOI
30 H.-J. Yoo and C. V. Hof, "Readout Circuits," in Bio-Medical CMOS ICs. Springer, 2011, pp. 125-135.
31 S.-I. Na, S. Kim, T.-H. Kim, H. Lee, and S. Kim, "A 32-channel neural recording system with a liquid-crystal polymer MEA," in IEEE Biomed. Circuits Syst. Conf., pp. 13-16, 2013.
32 A. Bragin, I. Mody, C. L. Wilson, and J. Engel, Jr, "Local generation of fast ripples in epileptic brain," J. Neurosci., vol. 22, pp. 2012-2021, Mar. 2002.   DOI
33 M. Yin and M. Ghovanloo, "A low-noise preamplifier with adjustable gain and bandwidth for biopotential recording applications," in Proc. IEEE Int. Symp. Circuits and Systems, pp. 321-324, 2007.
34 S. Kim, S.-I. Na, T.-H. Kim, H. Lee, S. Kim, C. Rhee, and S. Kim, "Neural recording system with low-noise analog front-end and comparator-based cyclic ADC," in IEEE Int. SOC Conf., pp. 110-114, 2012.
35 T. M. Seese, H. Harasaki, G. M. Saidel and C. R. Davies, "Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating," Lab. Invest., vol. 78, no. 12, pp. 1553-1562, 1998.
36 R. Harrison and C. Charles, "A low-power lownoise CMOS amplifier for neural recording applications," IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958-965, Jun. 2003.   DOI
37 X. Zou, X. Xu, L. Yao, and Y. Lian, "A 1-V 450-nW fully integrated programmable biomedical sensor interface chip," IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1067-1077, Apr. 2009.   DOI
38 A. Rodriguez-Perez, J. Ruiz-Amaya, M. Delgado-Restituto, and A. Rodriguez-Vazquez, "A lowpower programmable neural spike detection channel with embedded calibration and data compression," IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 2, pp. 87-100, Apr. 2012.   DOI
39 S. Lempka, M. Johnson, M. Moffitt, K. Otto, D. Kipke, and C. McIntyre, "Theoretical analysis of intracortical microelectrode recordings," J. Neural Eng., vol. 8, no. 4, p. 045006, Aug. 2011.   DOI