• Title/Summary/Keyword: Low Power Architecture

Search Result 614, Processing Time 0.026 seconds

Low-Power Bus Architecture Composition for AMBA AXI

  • Na, Sang-Kwon;Yang, Sung;Kyung, Chong-Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.2
    • /
    • pp.75-79
    • /
    • 2009
  • A system-on-a-chip communication architecture has a significant impact on the performance and power consumption of modern multi-processors system-on-chips (MPSoCs). However, customization of such architecture for a specific application requires the exploration of a large design space. Thus, system designers need tools to rapidly explore and evaluate communication architectures. In this paper we present the method for application-specific low-power bus architecture synthesis at system-level. Our paper has two contributions. First, we build a bus power model of AMBA AXI bus communication architecture. Second, we incorporate this power model into a low-power architecture exploration algorithm that enables system designers to rapidly explore the target bus architecture. The proposed exploration algorithm reduces power consumption by 20.1% compared to a maximally connected reduced matrix, and the area is also reduced by 20.2% compared to the maximally connected reduced matrix.

A Technique of ADD-based Architecture Design for Low Power Embedded Software (저전력 임베디드 소프트웨어 개발을 위한 ADD 기반의 아키텍처 설계 기법)

  • Lee, Jae-Wuk;Hong, Jang-Eui
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.4
    • /
    • pp.195-204
    • /
    • 2013
  • The embedded software has been developed in the forms of various versions that provides similar service based on product family. For increase usefulness of product family, software must has well-structured and reusable properties. Software architecture is important to improve adaptability in model-based development of embedded software mounted onto product family. In this paper, we proposed a technique of ADD(Attribute-Driven Design)-based software architecture design for low power software development. This technique provides a chance to consider the power consumption issue in design phase of software, and makes possible to develop low power embedded software.

Low-Power DCT Architecture by Minimizing Switching Activity (스위칭 엑티비티를 최소화한 저전력 DCT 아키텍쳐 구현)

  • Kim, San;Park, Jong-Su;Lee, Yong-Surk
    • Annual Conference of KIPS
    • /
    • 2005.05a
    • /
    • pp.863-866
    • /
    • 2005
  • Low-power design is one of the most important challenges encountered in maximizing battery life in portable devices as well as saving energy during system operation. In this paper we propose a low-power DCT (Discrete Cosine Transform) architecture using a modified Computation Sharing Multiplication (CSHM). The overall rate of power consume is reduced during DCT: the proposed architecture does not perform arithmetic operations on unnecessary bits during the Computation Sharing Multiplication calculations. Experimental results show that it is possible to reduce power dissipation up to about $7{\sim}8%$ without compromising the final DCT results. The proposed lowpower DCT architecture can be applied to consumer electronics as well as portable multimedia systems requiring high throughput and low-power.

  • PDF

A Low-power Digital Down Converter Architecture Using Interpolated IIR Filters (Interpolated IIR 필터를 사용한 저전력 디지털 다운 컨버터 아키텍처)

  • 장영범
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.127-130
    • /
    • 2000
  • This paper proposes a low-Power DDC(Digital Down Converters) architecture for IF(Intermediate frequency) signal processing. It is shown that concept of conventional interpolated FIR filters can be expanded to IIR filters for DDC applications. Also in the paper, power dissipations for the proposed architecture and conventional ones are estimated.

  • PDF

Design and Implementation of Low-Power DCT Architecture by Minimizing Switching Activity (스위칭 엑티비티를 최소화한 저전력 DCT 아키텍쳐 구현)

  • Kim San;Park Jong-Su;Lee Yong-Joo;Lee Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6C
    • /
    • pp.603-613
    • /
    • 2006
  • Low-power design is one of the most important challenges encountered in maximizing battery life in portable devices as well as saving energy during system operation. In this paper we propose a low-power DCT (Discrete Cosine Transform) architecture using a modified Computation Sharing Multiplication (CSHM). The overall rate of Power consumption is reduced during DCT: the proposed architecture does not perform arithmetic operations on unnecessary bits during the Computation Sharing Multiplication calculations. Experimental results show that it is possible to reduce power dissipation up to about $7\sim8%$ without compromising the final DCT results. The proposed low-power DCT architecture can be applied to consumer electronics as well as portable multimedia systems requiring high throughput and low-power.

High-Performance Low-Power FFT Cores

  • Han, Wei;Erdogan, Ahmet T.;Arslan, Tughrul;Hasan, Mohd.
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.451-460
    • /
    • 2008
  • Recently, the power consumption of integrated circuits has been attracting increasing attention. Many techniques have been studied to improve the power efficiency of digital signal processing units such as fast Fourier transform (FFT) processors, which are popularly employed in both traditional research fields, such as satellite communications, and thriving consumer electronics, such as wireless communications. This paper presents solutions based on parallel architectures for high throughput and power efficient FFT cores. Different combinations of hybrid low-power techniques are exploited to reduce power consumption, such as multiplierless units which replace the complex multipliers in FFTs, low-power commutators based on an advanced interconnection, and parallel-pipelined architectures. A number of FFT cores are implemented and evaluated for their power/area performance. The results show that up to 38% and 55% power savings can be achieved by the proposed pipelined FFTs and parallel-pipelined FFTs respectively, compared to the conventional pipelined FFT processor architectures.

  • PDF

A Study on Improvement of Low-power Memory Architecture in IoT/edge Computing (IoT/에지 컴퓨팅에서 저전력 메모리 아키텍처의 개선 연구)

  • Cho, Doosan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.69-77
    • /
    • 2021
  • The widely used low-cost design methodology for IoT devices is very popular. In such a networked device, memory is composed of flash memory, SRAM, DRAM, etc., and because it processes a large amount of data, memory design is an important factor for system performance. Therefore, each device selects optimized design factors such as function, performance and cost according to market demand. The design of a memory architecture available for low-cost IoT devices is very limited with the configuration of SRAM, flash memory, and DRAM. In order to process as much data as possible in the same space, an architecture that supports parallel processing units is usually provided. Such parallel architecture is a design method that provides high performance at low cost. However, it needs precise software techniques for instruction and data mapping on the parallel architecture. This paper proposes an instruction/data mapping method to support optimized parallel processing performance. The proposed method optimizes system performance by actively using hardware and software parallelism.

Low-Power Block Filtering Architecture for Digital IF Down Sampler and Up Sampler (디지털 IF 다운 샘플러와 업 샘플러의 저전력 블록 필터링 아키텍처)

  • 장영범;김낙명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.743-750
    • /
    • 2000
  • In this paper, low-power block filtering architecture for digital If down sampler and up sampler is proposed. Software radio technology requires low power and cost effective digital If down and up sampler. Digital If down sampler and up sampler are accompanied with decimation filter and interpolation filter, respectively. In the proposed down sampler architecture, it is shown that the parallel and low-speed processing architecture can be produced by cancellation of inherent up sampler of block filter and down sampler. Proposed up sampler also utilizes cancellation of up sampler and inherent down sampler of block filtering structure. The proposed architecture is compared with the conventional polyphase architecture.

  • PDF

Reconfigurable Multi-Array Architecture for Low-Power and High-Speed Embedded Systems

  • Kim, Yoon-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.207-220
    • /
    • 2011
  • Coarse-grained reconfigurable architecture (CGRA) based embedded systems aims to achieve high system performance with sufficient flexibility to map a variety of applications. However, the CGRA has been considered as prohibitive one due to its significant area/power overhead and performance bottleneck. In this work, I propose reconfigurable multi-array architecture to reduce power/area and enhance performance in configurable embedded systems. The CGRA-based embedded systems that consist of hierarchical configurable computing arrays with varying size and communication speed were examined for multimedia and other applications. Experimental results show that the proposed approach reduces on-chip area by 22%, execution time by up to 72% and reduces power consumption by up to 55% when compared with the conventional CGRA-based architectures.