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Abstract—Coarse-grained reconfigurable architecture 
(CGRA) based embedded systems aims to achieve 
high system performance with sufficient flexibility to 
map a variety of applications. However, the CGRA 
has been considered as prohibitive one due to its 
significant area/power overhead and performance 
bottleneck. In this work, I propose reconfigurable 
multi-array architecture to reduce power/area and 
enhance performance in configurable embedded 
systems. The CGRA-based embedded systems that 
consist of hierarchical configurable computing arrays 
with varying size and communication speed were 
examined for multimedia and other applications. 
Experimental results show that the proposed 
approach reduces on-chip area by 22%, execution 
time by up to 72% and reduces power consumption 
by up to 55% when compared with the conventional 
CGRA-based architectures. 
 
Index Terms—Embedded systems, Coarse-Grained 
Reconfigurable Architecture (CGRA), computing 
hierarchy, low power, high performance 

I. INTRODUCTION 

As the market pressure of embedded systems compels 
the designer to meet tighter constraints on cost, 
performance, and power, the application specific 
optimization of a system becomes inevitable. On the 

other hand, the flexibility of a system is also important to 
accommodate rapidly changing consumer needs. To 
accommodate these incompatible demands while 
efficiently supporting the complex embedded-applications, 
domain-specific design has emerged as a suitable solution 
for embedded systems. Coarse-grained reconfigurable 
architecture (CGRA)-based embedded system is the very 
domain-specific design in that it can boost the 
performance by adopting specific hardware engines 
while it can be reconfigured to adapt to ever-changing 
characteristics of the applications. 

In spite of the above advantages, the use of CGRA-
based design has been prohibitive due to its significant 
area/power consumption. The area and power overheads 
are caused by large memory components and the 
computing block of many processing elements. There is 
also a performance bottleneck due to the conventional 
communication structure between processor and 
reconfigurable computing block that cannot adaptively 
support various applications. Therefore, reducing 
area/power and improving performance of CGRA-based 
system has been a serious concern. 

In this paper, I propose a new reconfigurable 
computing hierarchy to design cost-effective CGRA-
based embedded systems. The computing hierarchy 
consists of two reconfigurable computing blocks with 
two types of communication structure together. Based on 
the hierarchy, efficient communication structure between 
processor and reconfigurable computing blocks can 
reduce performance bottleneck in the CGRA-based 
architecture. In addition, the proposed reconfigurable 
array splits the computational resources into two groups 
(primitive resources and critical resources). Critical 
resources can be area-critical and/or delay-critical. 
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Primitive resources are replicated for each processing 
element of the reconfigurable array, whereas area-critical 
resources are shared among multiple basic PEs in order 
to reduce more area of CGRA. Delay-critical resources 
can be pipelined to curtail the overall critical path so as 
to increase the system clock frequency. The two 
computing blocks have shared pipelined-critical 
resources. Such a sharing/pipelining structure provides 
efficient communication interface between them with 
reducing overall area.  

This paper is organized as follows. After the related 
work in Section II, I describe coarse-grained 
reconfigurable architecture and loop pipelining as 
preliminary in Section III. In Section IV, I present the 
motivation of my approach. Then I propose the new 
reconfigurable computing hierarchy for CGRA in section 
V and the experimental results are given in Section VI. 
Finally I conclude the paper in the Section VII. 

II. RELATED WORKS 

In [1], Hartenstein summarized many CGRAs that had 
been suggested until 2001. Since then, many more new 
CGRAs have been continuously proposed and evolved. 
Most of them comprise of a fixed set of specialized 
processing elements (PEs) and interconnection fabrics 
between them. The run-time control of the operation of 
each PE and the interconnection provides the 
reconfigurability. However, such fixed architecture has 
limitations in optimizing the cost and performance for 
various applications. For example, Morphosys [2] consists 
of 8 × 8 array of Reconfigurable Cell coupled with 
Tiny_RISC processor through system bus. It shows good 
performance for regular code segments in computation 
intensive domains but requires large amount of area and 
power consumption. XPP configurable system-on-chip 
architecture [3] is another example. XPP has 4 × 4 or 8 × 
8 reconfigurable array and LEON processor with AMBA 
bus architecture. A processing element of XPP is 
composed of an ALU and some registers. Since the 
processing elements do not include heavy resources, the 
total area cost is not high but the range of applicable 
domains is restricted. In addition, XPP shows significant 
communication overhead between the processor and 
RAA through the system bus. REMARC [5] is 
reconfigurable Multimedia Array Coprocessor that 

consists of a global control unit and an 8 × 8 array of 
nano processors. The nano processors do not also include 
heavy resources like XPP but it also restricts the range of 
applicable domains. However, the communication with 
main processor is faster than [2] or [3] because the 
processor can access the register-set by coprocessor data 
transfer instructions. However, limited size of the 
register-set causes heavy registers-array traffic restricting 
performance enhancement. ADRES [4] tightly couples a 
VLIW processor and a reconfigurable matrix through 
shared register file. The reconfigurable matrix is used to 
accelerate the dataflow-like kernels in a highly parallel 
way, whereas the VLIW processor executes the non-
kernel code by exploiting instruction-level parallelism. 
Even though it also provides the fast communication 
speed between VLIW and the matrix but the entire 
structure is very dependent on VLIW processor 
architecture and it require huge register file for the 
communication. Therefore, the performance is limited by 
size of the register file. In [12], authors have also used 
reconfigurable computing cache that is different from my 
proposed RCC. Their RCC block is LUT-based and used 
for both memory and computing units.  

III. PRELIMINARY 

In this section, I briefly introduce coarse-grained 
reconfigurable architecture and loop pipelining that is a 
very representative computation model for CGRA. The 
loop pipelining is an essential concept to explain 
resource sharing and pipelining in CGRA described in 
section V.  

 
1. Coarse-Grained Reconfigurable Architecture 

 
Typically, a CGRA-based system consists of a main 

processor, a Reconfigurable Array Architecture (RAA), 
and their interface as Fig. 1. The RAA has identical 
processing elements (PEs) containing functional units 
and a few storage units. The PEs in the array are 
connected to the nearest neighbor PEs In addition, they 
have limited interconnections between non-neighboring 
PEs in order to perform column-wise or row-wise data-
transfer efficiently. These interconnections are 
reconfigurable because input multiplexers in each PE 
have inputs from other PEs. The data buffer provides 
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operand data to PE array through a high-bandwidth data 
bus. The configuration cache (or context memory) is 
composed of cache elements (CEs) and each CE provides 
context word to configure each PE.  

 
2. Loop Pipelining 

 
To represent the characteristics of loop pipelining [16], 

I examine the difference between SIMD and MIMD in 
the RAA with a simple example. I assume a mesh-based 
4 x 4 coarse-grained reconfigurable array of PEs, where a 
PE is a basic reconfigurable element composed of an 
ALU, an array multiplier, etc. and the configuration is 
controlled by the words stored in the CE as shown in Fig. 
2(a). In addition, I assume that Frame Buffer has simply 
one set having three banks and two read-ports and one 
write-port, supporting any combination of one-to-one 
mapping between the three banks and the three buses. 
Fig. 2(b) shows such a Frame Buffer and data bus 
structure, where the PEs in each row of the array share 
two read buses and one write bus. The 4 × 4 array has 
nearest neighbor interconnections as shown in Fig. 2(c) 
and each row or each column has a global bus as shown 
in Fig. 2(d).  

Consider a square matrix X and Y, both of order N, and 
the computation of Z, an N element vector, given by 

 

∑
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where i, j = 0,1,…,N-1, C( j ) is a constant vector, and K 
is a constant.  

Consider N=4 for the mapping of the computation 

defined in Eq. (1) on the 4 x 4 PE array and let the 
computation be given as a C-program (Fig. 3(a)). It is 
assumed that the input matrix X, Y, constant vector C and 
output vector Z are stored in the arrays x[i][j], y[i][j], c[j] 
and z[i], and z[i] is initialized to zero. Fig. 3(b) shows 
parallelized code for execution on the array as shown in 
Fig. 4, where I assume that matrix X and Y have been 
loaded into the Frame Buffer (FB) and all of the 
constants (C and K) have been already saved in a register 
file of each PE. Vector Z is stored in the FB after it has 
been processed by the PE array as shown in Fig. 4(a). 
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Fig. 1. Block diagram of general CGRA. 
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Fig. 2. 4 x 4 reconfigurable array. (a) Distributed cache 
structure, (b) Frame buffer and data bus, (c) Structure nearest 
neighbor interconnection, (d) Global bus interconnection. 
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The SIMD-based scheduling enables parallel execution 
of multiple loop iterations as shown in Fig. 4(c), whereas 
the MIMD-based scheduling enables loop pipelining as 
shown in Fig. 4(d). The first row of Fig. 4(c) represents 
the direction of configuration broadcast. The second row 
of Fig. 4(c) and the first row of Fig. 4(d) indicate the 
schedule time in cycles from the start of the loop. In the 
case of SIMD model, load and addition operations in PEs 
are executed on all columns till 4th cycle with broadcast 
in column direction.  Then the PEs in a row perform the 
same operation with broadcast in row direction. In the 
case of loop pipelining, PEs in the first column perform 
load and addition operations in the first cycle and then 
perform multiplications in the second cycle. In the next 
two cycles, the PEs in the first column perform 
summations, while the PEs in the next column perform 
multiplication and summation operations. When the first 
column performs the multiplication/store operation in the 
5th cycle, the fourth column performs multiplication. 
Comparing the latency, SIMD takes three more cycles. 
As shown in this example, SIMD model does not utilize 
PEs efficiently since all data should be loaded before the 
computations of the same type are performed 
synchronously. On the other hand, since MIMD allows 

any type of computations at any moment, it does not 
need to wait for a specific data to be loaded but can 
process other data that is readily available. Loop 
pipelining is an effective way of exploiting this fact, 
thereby utilizing PEs better. The loop pipelining in the 
example of Fig. 4 improves the performance by three 
cycles compared to the SIMD, but for loops with more 
frequent memory operations, it will have higher 
performance improvement. 
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Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST

Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST

(c) 

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+  ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+  ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP
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Cycle Time 1 2 3 4 5 6 7 8
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Fig. 4. Execution model for CGRA. (a) Operand and result 
data in FB, (b) Configuration broadcast, (c) SIMD model, (d) 
Loop pipelining schedule. 

for (i = 0; i <= 3; i = i+1)
{ 

for (j = 0; j <= 3; j = j+1)
z[i] = (x[i][j]+y[i][j])*c[j] + z[i];

z[i] = K* z[i];
}

 
(a) 

for (i = 0; i <= 3; i = i+1)        
{

t1 = x[i][0]+y[i][0] ;
t2 = x[i][1]+y[i][1] ; 
t3 = x[i][2]+y[i][2] ; 
t4 = x[i][3]+y[i][3] ;

t1 = t1*c[0];
t2 = t2*c[2];
t3 = t3*c[3];
t4 = t4*c[4]; 

tmp1 = t1+ t2 ; 
tmp2 = t3+ t4 ;

z[i] = tmp1+ tmp2 ;

z[i] = K*z[i]
}

LD/+

×

2+

1+ 

×/ST

 
(b) 

Fig. 3. C-code of Eq. (1). (a) Before parallelization, (b) After 
parallelization. 
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When mapping kernels onto the reconfigurable 
architecture with loop pipelining, we can consider two 
mapping techniques: spatial mapping and temporal 
mapping. Fig. 5 shows the difference between the two 
techniques with the previous example. In the case of 
temporal mapping (Fig. 5(a)), like the previous illustration 
of loop pipelining in Fig. 4(d), a PE executes multiple 
operations within a loop by changing the configuration 
dynamically. Therefore, complex loops having many 
operations with heavy data dependencies can be mapped 
better in temporal fashion, provided that the configuration 
cache has sufficient layers to execute the whole loop body.  

In the case of spatial mapping, a loop body is spatially 
mapped onto the reconfigurable array implying that each 
PE executes a fixed operation with static configuration as 
shown in Fig. 5(b). The advantage of spatial mapping is 
that it may not need reconfiguration during execution of 
a loop. As can be seen from Fig. 5, spatial mapping 
needs only one or two cache layers whereas temporal 
mapping needs 4 cache layers. One disadvantage of 
spatial mapping is that spreading all the operations of the 
loop body over the limited reconfigurable array may 
require too many resources. Moreover, data dependencies 
between the operations should be taken care of by 
allocating interconnect resources to provide a path and 
inserting registers (or using PEs) in the path to 
synchronize the arrival of operands. Therefore, if the 
loop is simple enough to map the loop body to the 
limited reconfigurable array and there is not much data 
dependency between the operations, then spatial mapping 

is the right choice. The effectiveness of the mapping 
strategies depends on the characteristics of the target 
architecture as well as the target application. 

IV. MOTIVATION 

1. Limitation of Existing Communication Structures 
 
A typical coarse-grained reconfigurable architecture 

consists of a microprocessor, a Reconfigurable Array 
Architecture (RAA), and their interface. I can consider 
three types of organizations in connecting RAA to the 
processor. First, the array can be connected to the 
processor through a system bus as an ‘Attached IP’ [2, 3, 
8] shown in Fig. 6(a). In this case, the main benefit of 
this organization is the ease of constructing such a 
system using a standard processor without modifying the 
processor and its compiler. In addition, large data buffer 
of RAA can be used to support applications having large 
inputs/outputs. However, the speed improvement using 
the RAA may have to compensate for significant 
communication overhead between the processor and 
RAA through system bus as well as SRAM-based large 
data buffer in RAA consumes much power. Second type 
of organization involves the array connected with the 
processor as a ‘Coprocessor’ [5-7] shown in Fig. 6(b). In 
this case, the standard processor does not change and the 
communication is faster than ‘Attached IP’ type 
interconnects because the coprocessor register-set is used 
as data buffer of the RAA and the processor can access 
the register-set by coprocessor data transfer instructions. 
In addition, the register-set consumes less power than the 
data buffer of ‘Attached IP’. Since the size of the 
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register-set is fixed by the processor ISA, it creates 
performance bottleneck for registers-PE array traffic due 
to applications having large inputs/outputs run on the 
RAA. In the third type of organization, the array is 
placed inside the processor like a ‘FU (Functional Unit)’ 
[4, 10, 11] as shown in Fig. 6(c). In this case, the 
instruction decoder issues special instructions to perform 
specific functions on the RAA as if it were one of the 
standard functional units of the processor. In this case, 
the communication speed is faster than ‘Coprocessor’ 
and power consumption of the data storage is less than 
‘Attached IP’ because the processor register-set is used 
as data buffer of the RAA and the processor can directly 
access the register-set by the processor instructions. 
However, standard processor needs to be modified for 
due to integration with RAA and its compiler should be 
also changed. The performance bottleneck is caused by 
limited size of the processor registers as in the case of 
‘Coprocessor’ type organization. Table 1 shows a 
summary about advantage and disadvantage of three 
coupling types.  

 
2. RAA-based Computing Hierarchy 

 
As mentioned in the previous section, basic three types 

of RAA organizations show advantage and disadvantage 
according to the input/output size of the applications. It 
shows the existing coupling structure with a conventional 
RAA cannot be flexible to support various applications 
with sacrificing performance. In addition, such an RAA 
structure cannot efficiently utilize PE arrays and data 
buffers leading to high power consumption.  

I hypothesize that if CGRA can maintain a computing 
hierarchy of its RAAs having different size and 
communication speed, the CGRA-based embedded 

system can be optimized for its performance and power. 
It is because such a hierarchical arrangement of the RAA 
can optimize the communication latency and efficiently 
utilize functional resources of PE array in various 
applications. In this paper I propose a new CGRA-based 
architecture that supports such a RAA-based computing 
hierarchy.  

V. COMPUTING HIERARCHY IN CGRA 

In order to implement efficient CGRA-based embedded 
systems1, I propose a new computing hierarchy consisting 
of two computing blocks using two types of coupling 
structures together – ‘Attached IP’ and ‘Coprocessor’. In 
this organization, a general RAA having large size PE 
array is connected to a system bus and another is a small 
RAA composed of small PE array coupled with a 
processor through coprocessor interface. I call the small 
RAA reconfigurable computing cache (RCC) because it 
plays an important role in enhancing performance and 
power of the entire CGRA like data cache. The RCC and 
the RAA share critical resources and such a sharing 
structure provides efficient communication interface 
between two computing blocks. The proposed approach 
ensures that the RCC and the RAA are efficiently utilized 
to support variable size of inputs and outputs for variety 
of applications. In subsection V.1 and V.2, I describe 
computing hierarchy and resource sharing/pipelining in 
RCC and RAA in detail. Then I show how to optimize 
computing flow based on reconfigurable computing 
cache according to the applications in subsection V.3. 

 
1. Computing Hierarchy – Size and Speed  

 
A CGRA-based computing hierarchy is formed by 

splitting a conventional computing RAA block into two 
computing blocks – RCC with small PE array and RAA 
having large PE array as shown in Fig. 7(a). The RCC is 
coupled with coprocessor interface and the RAA is 
attached to a system bus as shown in Fig. 7(b). The RCC 
provides fast communication with the processor and 

                                            
1 I exclude the type of ‘Functional Unit’ from the proposed computing 

hierarchy because it requires the modification of processor and its 
compiler and entire CGRA is heavily dependent on the specific 
processor architecture. Our proposed approach aims to implement 
entire systems allowing any combination of standard processors and 
RAAs.  

Table 1. Comparison of the basic coupling types 

Coupling 
type 

*Comm’ 
power 

**Comm’ 
speed 

Performance 
Bottleneck 

Application
feasibility 

Attached IP high slow communication 
through system bus 

large size of  
input/output

Coprocessor low fast 
limited size of 
coprocessor  
register-set 

small size of 
input/output

Functional 
unit low  very  

fast 
limited size of 

processor registers 
small size of 
input/output

* Comm’ power: power consumption by data-storage (data buffer or  
registers)  

** Comm’ speed: Communication speed between processor and RAA 
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offers low power consumption by using coprocessor 
register-set and small array size. Therefore the RCC can 
enhance performance and reduce power consumption 
when small applications run on CGRA. If RCC is not 
sufficient to support computing requirements of in 
applications, intermediate data from the RCC can be 
moved to the RAA through the interconnections as 
shown in Fig. 8. Such interconnections between the two 
blocks offer flexibility in migrating computing demands 
from one to another. Such computing flow may help to 
optimize performance and power for the applications 
having various sizes of inputs/outputs whereas the 
existing models show performance bottlenecks caused by 
the communication overheads or the limited size of the 
data-storages as shown in Table 1. I have described the 
computing flow optimization in detail in subsection V.3. 

 
2. Resource Sharing and Pipelining in RCC and RAA  

 
I have so far presented two factors (speed and size) in 

building computing hierarchy for CGRAs similar to 

memory hierarchy. It seems a small portion of RAA has 
been detached from large CGRA block and placed as the 
fast RCC block adjacent to the processor coupled with 
coprocessor interface. However, only considering two 
factors is not sufficient to design compact RCC for 
power and area benefits. This is because computing 
blocks can have diverse functionality which affects the 
system capabilities. The functionality of computing blocks 
is specified by functional resources of its PE such as 
adder, multiplier, shifter, logic operations etc. Therefore, 
it is necessary to examine how to select the functionalities 
of RCC and RAA. This leads to further studies on 
resource assignment between RCC and RAA. In the next 
subsection, I describe basic techniques to efficiently assign 
the resources between RCC and RAA - resource sharing 
and pipelining in CGRA [9]. Although these techniques 
are well known and widely used in other digital systems 
design, to the best of my knowledge, [9] is the first 
attempt to apply them to an RAA. Based on the basic 
techniques, I present an extension of resource sharing 
and pipelining in RCC and RAA in subsection V.2.2. 

 
A. Resource Sharing and Pipelining 

 
Fig. 9 shows the snapshot taken at the 5th cycle of 

execution of the previous example for three cases as 
shown in Fig. 5: (a) SIMD and two cases of loop 
pipelining - (b) temporal mapping and (c) spatial 
mapping. The operations in the 5th cycle for (a), (b) and 
(c) include multiplication and therefore the multipliers in 
the PE array are to be used. In the case of SIMD, all PEs 
perform multiplication requiring all of them to have 
multipliers, thereby increasing the area cost of the PE 
array. However, in the case of temporal mapping, only 
PEs in the 1st column and the 4th column perform 
multiplication while PEs in the 2nd and 3rd columns 
perform addition. In the spatial mapping, only PEs in the 
1st and 2nd columns perform multiplication. As can be 
observed, in the temporal mapping and spatial mapping, 
there is no need for all PEs to have the same functional 
resources at the same time. This allows the PEs in the 
same column or in the same row to share area-critical 
resources. Fig. 10 shows four PEs in a row sharing two 
multipliers2 at the 5th cycle in temporal mapping and 
                                            
2 Since multipliers take much more area than other resources, we 

classify them as critical resources. 
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spatial mapping. I depict only the connections related to 
resource sharing. 

Fig. 11 depicts the detailed connections for multiplier 
sharing. The two n-bit operands of a PE are connected to 
the bus switch. The dynamic mapping of a multiplier to a 
PE is determined at compile time and the information is 
encoded into the configuration word. At run-time, the 
mapping control signal from the configuration word is 
fed to the bus switch and the bus switch decides where to 
route the operands. After the multiplication, the 2n-bit 
output is transferred from the multiplier to the original 

issuing PE via the bus switch.  
If there is a critical functional resource with long 

latency in a PE, the functional resource can be pipelined 
to curtail the critical path. Resource pipelining has clear 
advantage in loop pipelining execution because 
heterogeneous functional units with different delays can 
run at the same time. In the traditional design (Fig. 12(a)), 
the latency of a PE is fixed but in the pipelined PE design 
(Fig. 12(b)), we allow multi-cycle operations and so the 
latency can vary depending on the operation. This helps 
increase the system clock frequency.  

If a critical functional resource such as a multiplier has 
both large area and long latency, the resource sharing and 
resource pipelining can be applied at the same time in 
such a way that the shared resource executes multiple 
operations at the same time in different pipeline stages. 
With this technique, the conditions for resource sharing 
are relaxed and so the critical resources are utilized more 
efficiently. Fig. 13 shows this situation. Through the 
pipelining, we can reduce the number of multipliers from 
8 to 4 to perform the execution without any stall. This is 
because two PEs sharing one pipelined multiplier can 
perform two multiplications at the same time using 
different pipeline stages.  
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Fig. 9. Snapshots of three mappings. (a) SIMD, (b) Temporal 
mapping, (c) Spatial mapping. 
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B. Functional Resource Assignment Between L1 PE Array 
and L2 PE Array  

 
First of all, I can classify the functional resources into 

two groups: primitive resources and critical resources. 
Primitive resources are basic functional units such as 
adder/subtractor and logical operators. Critical resources 
are area/delay-critical ones such as multiplier and divider. 
Based on the classification, let us consider two cases of 
the functional resource configurations as shown in Fig. 
14. Fig. 14(a) shows hierarchical functionality that 
indicates L1 PE array has primitive resources and L2 PE 
array includes critical resources as well as primitive 
resources. The Fig. 14(b) shows identical functionalities 
both in the L1 and L2 PE arrays. In the case of Fig. 14(a), 
the RCC with L1 PE array is relatively lightweight 
computing block compared to the RAA with L2 PE array. 
Therefore, the RCC can perform small applications 
having only primitive operations with low power 
consumption. However, it causes ‘lack of resource’ 
problem when applications demand critical operations. In 
Fig. 14(b) L1 and L2 PE arrays have identical 
functionality with area and power overheads. 

To prevent such extreme cases, I propose resource 
sharing and pipelining for the RCC and the RAA based 
on subsection V.2.1. L1 and L2 PE array have the same 
primitive resources and shared the pipelined critical 
resources as shown in Fig. 15. Here the RCC and the 

RAA basically perform the primitive operations and their 
functionality will include the critical operations using the 
shared resources. Fig. 16 shows interconnection structure 
with shared critical resources along with RCC and RAA. 
PEs in the same row of the L1 nd L2 array share the 
pipelined critical resources in the same manner as shown 
in subsection V.2.1. Such a structure avoids the ‘lack of 
resource’ problem in Fig. 14(a) and this structure is more 
area and power-efficient than Fig. 14(b) because the 
number of critical resources is reduced and the critical 
resources taken out of L1 and L2 PE array are not 
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Fig. 13. Loop pipelining with pipelined multipliers. (a) Temporal 
mapping, (b) Spatial mapping. 
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affected by unnecessary switching activity caused by 
other resources. In addition, interconnections for resource 
sharing can be also utilized for communication interface 
between the RCC and the RAA by adding multiplexer 
and de-multiplexer between front and end of the critical 
resources as shown in Fig. 16(b).  

 
C. Computing Flow Optimization 

 
Based on the proposed CGRA structure, I can classify 

four cases of optimized computing flow to achieve low 
power and high performance. Fig. 17 shows such four 
computing flows on the proposed CGRA according to 
variance of input and output size of applications – In 
subsection V.1.2, Table 3 shows that I can select the 
optimal case among the proposed computing flows for 
several applications with variance in their input/output 
size. All of the cases show that shared critical resources 
are used as needed because they are only utilized when 
applications have the operations requiring the critical 
resources. Fig. 17(a) shows computing flow when 
application has the smallest inputs and outputs. In this 
case, only RCC functional units are used to execute the 
application while the RAA is disabled to reduce power 
consumption. However, if the application has larger 
inputs and outputs than Fig. 17(a), the computing flow 
can be extended to L2 PE array as shown in Fig. 17(b). 
Even though L2 PE array is used for this case, data 
buffer of the RAA is not used because the coprocessor 
register-set (CREG) is sufficient to save the all of the 
inputs or outputs. The next case is that when RAA is 
used with RCC because of large inputs and small outputs 
as shown in Fig. 17(c). In this case, data buffer of the 
RAA receives inputs using DMA which is more efficient 
for overall performance than CREG. This is because 
insufficient CREG resource for large inputs causes 
performance bottleneck with heavy registers-PE array 
traffic. Therefore, the L2 PE array may be used first for 
running such application and the L1 PE array can be 
utilized for enhancing parallelized execution as needed. 
However, the outputs are stored on CREG because their 
size is small. Finally, Fig. 17(d) shows a case of RAA 
used with L1 PE array with large inputs and outputs. To 
avoid heavy registers-PE array traffic by the large 
input/output size, the data buffer with DMA is used and 
L1 PE array can be optionally utilized for enhancing 

parallelized execution. In summary, the computing flow 
on the proposed CGRA can be adapted according to the 
input/output size of applications. It is more power-
efficient than using a conventional CGRA by separated 
computing blocks with sharing critical resources. This 
way is only necessary computing blocks are utilized. In 
addition, computing flow with supporting two 
communication interfaces reduces power and enhances 
performance.  

VI. EXPERIMENTS AND RESULTS 

1. Experimental Setup 
 

A. Architecture Implementation  
 
To demonstrate the effectiveness of the proposed 
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Fig. 17. Four cases of computing flow according to the 
input/output size of application. (a) Smallest inputs and outputs 
(STIO), (b) Small inputs and outputs (SIO), (c) Large inputs 
and small outputs (LISO), (d) Large inputs and outputs (LIO).
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RCC-based CGRA, we have designed three different 
organizations of CGRA with RT-level implementation 
using VHDL as shown in Table 2.  

In addition, for resource sharing of RCC-based CGRA, 
two pipelined multipliers and two shifters are shared by 
PEs in the same row of L1 and L2 PE array whereas 
conventional two types of CGRA do not support such a 
resource sharing and pipelining.  

The architectures have been synthesized using Synopsys 
Design Compiler with TSMC 0.18 μm technology. 
Synopsys PrimePower tools have been used for gate-
level simulation and power estimation. To obtain the 
power consumption data, we have used the applications 
in Table 2 for simulation with operation frequency of 70 
MHz and typical case of 1.8 V Vdd and 27 .℃  

 
B. Evaluated Applications 

 
Evaluated applications are composed of real multimedia 

applications and benchmarks. We have analyzed the 
input/output size and operation-types in the applications 
to identify specific computing flow in Fig. 17. Table 3 

shows the selected applications and the optimal computing 
flows for them.  

I have used automatic compilation flow [17] to map 
applications onto the three architectures for supporting 
loop pipelining [16]. Binary context words are 
automatically generated from the compiler for temporal 
mapping. The timing and control information that is used 
to operate execution controller is manually optimized and 
the final encoded data is loaded onto registers of the 
execution controller. 

 
2. Results 

 
A. Area Cost Evaluation 

 
Table 4 shows area cost evaluation for the two cases. 

‘Base 8 × 8’ means 8 × 8 PE array included in ‘Attached 
IP’ and ‘Coprocessor’ type CGRA. ‘Proposed’ means L1 
and L2 PE array included in the proposed RCC-based 
CGRA. Even though interconnection area of the 
proposed model increases because of resource sharing 
structure, entire area of the proposed one is reduced by 
22.68% because it has less critical resources than base 8 
× 8 PE array.  

 

 
 

B. Performance Evaluation 
 
The synthesis results show that the proposed PE array 

has reduced critical path delay (5.12 ns) compared to the 
base PE array (8.96 ns). This is because pipelined 
multipliers are excluded from the original set of critical 
paths. Based on the synthesis results, we evaluate 
execution times of the selected applications on three 
cases of CGRA as shown in Fig. 18. The execution times 
are cycle–accurate because they have been obtained by 
running applications with designed RTL code on a HDL 
simulator. They include communication time between 
memory/processor and the RAA or RCC. Each 
application is executed on the RCC-based CGRA in the 
manner of selected computing flow as shown in Table 3 

Table 4. Area cost comparison 

Gate Equivalent PE 
Array

No’ of
PEs

No’ of
MULTs

No’ of
SHTs Interconnect Logic Total

R(%)

Base 8 × 8 64 64 64 151234 478908 630143 - 
Proposed 64 16 16 161311 325908 487219 22.68

Table 2. Comparison of the basic coupling types 

CGRA PE array Data storage 
Attached IP 8 × 8 PE array 6 KB data buffer 
Coprocessor 8 × 8 PE array 256-byte coprocessor register-set

Proposed 
RCC-based 

8 × 2 L1 PE array and 
8 × 6 L2 PE array 

4 KB data butter and 256-byte  
coprocessor register set 

(Leon2 processor [15] is used as main processor) 

Table 3. Application characteristics 

Applications SR Flow Benchmarks SR Flow
(H.263) 8 x 8 DCT  SIO *256-point FFT  LISO 
(H.263) 8 x 8 IDCT  SIO *256-tap FIR  LISO 
(H.263) 8 x 8 QUANT  SIO *Complex Mult  LISO 
(H.263) 8 x 8  
DEQUANT  SIO **State  STIO 

(H.263) SAD - LISO **Hydro  STIO 
(H.264) 4 x 4 ITRANS  STIO **Tri-Diagonal  LIO 
(H.264) MSE  LISO **First-Diff - STIO 
(H.264) MAE - LISO **ICCG  STIO 
(H.264) 16 x 16 DCT  LISO **Inner Product  LIO 
8 x 8 * 8 x 1  
Matrix-Vector 
Multiplication 

 SIO 

16 x 16 * 16 x 1 Matrix-
Vector Multiplication  LISO 

8 x 8 Matrix 
Multiplication  SIO 

16 x 16 Matrix 
Multiplication  LISO 

*: DSPstone benchmarks [13] 
**: Livermore loop benchmarks [14]
SR:‘ ’means critical resources are

used for the application. 
STIO: smallest inputs and outputs 
SIO: small inputs and outputs 
LISO: large inputs and small  

outputs 
LIO: large inputs and outputs 
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– all of the applications are classified under 4 cases of 
computing flow (STIO, SIO, LISO and LIO). In the case 
of STIO and SIO, performance improvement compared 
with ‘Coprocesssor’ type is relatively less (30.31%~ 
37.03%) than LIO and LISO (60.94%~72.92%). This is 
because the improvements of STIO and SIO are achieved 
by only reduced critical path delay whereas the 
improvements of LIO or LISO are achieved by avoiding 
heavy coprocessor registers-PE array traffic as well as 
reduced critical path delay. However, compared with 
‘Attached-IP’ type, STIO and SIO achieve much more 
performance improvement (56.60%~67.90%) whereas 
LISO and LIO show the improvement of (42.05%~ 
59.85%). This is because STIO and SIO do not use data 
buffer of the RAA causing communication overhead on 
system bus.  

C. Power Evaluation 
 
Fig. 19 shows the comparison of power consumptions 

in three different organizations of CGRA. First of all, the 
proposed L1 and L2 PE array is more power-efficient 
than the base PE array because of the reduced critical 
resources. With such a power-efficient PE array, the 
amount of power saving depends on the selected 
computing flow for the application. The most power-
efficient computing flow is STIO that shows relatively 
much power saving (40.44%~55.55%) compared to other 
cases (7.93%~29.67%) because the STIO does not use 
the RAA - specially, ‘First_Diff’ shows the highest 
power saving ratio of 51.71%/55.55% because of not 
using the shared critical resources. The next power-
efficient model is SIO showing power saving (23.67%~ 
29.67%). This is because the SIO computing flow does 
not use data buffer of the RAA whereas LISO 
(7.93%~26.03%) and LIO (17.13%~22.91%) utilizes the 
data buffer for input data or output data. Finally, power 
saving of LISO and LIO is mostly achieved by reduced 
critical resources and by not activating L1 PE array.  
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A%/B%: A% means reduced execution time ratio compared with 
Coproc-Type and B% means reduced execution time ratio compared 
with IP-Type.  

Fig. 18. Performance comparison. (a) Real applications, (b) 
Benchmarks. 
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A%/B%: A% means power saving ratio compared with Coproc-Type
and B% means power saving ratio compared with IP-Type. 

Fig. 19. Power comparison. (a) Real applications, (b) Benchmarks.
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VII. CONCLUSIONS 

Coarse-grained reconfigurable architectures have 
emerged as a suitable solution for embedded systems 
because it aims to achieve high performance and 
flexibility. However, the CGRA has been considered as 
prohibitive one due to its significant area/power overhead 
and performance bottleneck. In addition, fixed 
communication structure between the computing block 
and processor can not guarantee good performance for 
various applications. To overcome the limitations, in this 
paper, I proposed a new computing hierarchy consisting 
of two reconfigurable computing blocks with two types 
of communication structure together. In addition, the two 
computing blocks have shared critical resources. Such a 
sharing structure provides efficient communication 
interface between them with reducing overall area. 
Experiments with implementation of several applications 
on the new hierarchical CGRA demonstrate the 
effectiveness of my proposed approach. The proposed 
approach reduces area by up to 22.68%, execution time 
by up to 72.92% and power by up to 55.55.% when 
compared with the existing undivided arrays in CGRA 
architectures.  

ACKNOWLEDGMENTS 

This Research was supported by the Sookmyung 
Women's University Research Grants 1-1103-0728. 

REFERENCES 

[1] Reiner Hartenstein, “A decade of reconfigurable 
computing: a visionary retrospective,” in Proc. of 
Design Automation and Test in Europe Conf., 
pp.642-649, Mar., 2001.  

[2] Hartej Singh et al, “MorphoSys: an integrated 
reconfigurable system for data-parallel and 
computation-intensive applica-tions,” IEEE Trans. 
on Computers, Vol.49, No.5, pp.465-481, May, 
2000. 

[3] A. Deledda et al, “Design of a HW/SW 
communication infra-structure for a heterogeneous 
reconfigurable processor,” in Proc. of Design, 
Automation, and Test in Europe Conf., pp.1352-
1357, Mar., 2008.   

[4] C. Arbelo et al, “Mapping Control-Intensive Video 
Kernels onto a Coarse-Grain Reconfigurable 
Architecture: the H.264/AVC deblock-ing filter,” 
in Design Automation and Test in Europe Conf., 
pp.642-649, Mar., 2007.  

[5] T. Miyamori and K. Olukotun, “A quantitative 
analysis of reconfigurable coprocessors for 
multimedia appli-cations,” in Proc. of IEEE Symp. 
on FPGAs for Custom Computing Machines, 
pp.15-17, Apr., 1998. 

[6] Michalis D. Galanis et al, “Speedups in embed-ded 
systems with a high-performance coprocessor 
datapath,” ACM Transactions on Design Automation 
of Electronic Systems, Vol.12, No.35, Aug., 2007.  

[7] Timothy J. Callahan et al, “The Garp architecture 
and C compiler,” IEEE Computer, Vol.33, No.4, 
pp.62-69, Apr., 2000. 

[8] A. S. Y. Poon, “An Energy-Efficient Reconfigurable 
Baseband Processor for Wireless Communications,” 
IEEE Trans. on Very Large Scale Integration 
Systems, Vol.15, No.3, pp.319-327, Mar., 2007. 

[9] Yoonjin Kim et al, “Resource sharing and pipelining 
in coarse-grained reconfigurable architecture for 
domain-specific optimization,” in Proc. of Design 
Automation and Test in Europe Conf., pp.12-17, 
Mar., 2005. 

[10] Francisco Barat et al, “Low power coarse-grained   
reconfigurable instruction set processor,” in Proc. 
of  Int. Conf. on Field Pro-grammable Logic and 
Applications, pp.230-239, Sep., 2003. 

[11] Marco Lanuzza et al, “Cost-effective low-power 
processor-in-memory-based reconfig' datapath for 
multimedia applications,” in Proc. of Int. Symp. on 
Low Power Electronics and Design, pp.161-166, 
Aug., 2005. 

[12] Huesung Kim et al, “Low-power high-performance 
reconfigurable computing cache architectures,” IEEE 
Trans. on Computers, Vol.53, No.10, pp.1274-1290, 
Oct., 2004. 

[13] http://www.ert.de/Projekte/Tools/DSPSTONE 
[14] http://www.netlib.org/benchmark/livermorec 
[15] Gaisler Research; http://www.gaisler.com/cms 
[16] Jong-eun Lee et al, “Mapping loops on coarse-

grained reconfigurable architectures using memory 
operation sharing,” in Technical Report 02-34, 
Center for Embedded Computer Sys-tems(CECS), 
Univ. of California Irvine, Calif., 2002. 



220 YOONJIN KIM et al : RECONFIGURABLE MULTI-ARRAY ARCHITECTURE FOR LOW- POWER AND ~ 

 

[17] Jonghee W. Yoon et al, “Temporal Mapping for 
Loop Pipelining on a MIMD style Coarse-Grained 
Reconfigurable Architecture,” in Proc. of 
International SoC Design Conference, Oct., 2006. 

 
 
 

Yoonjin Kim received the B.S. degree 
in information and communication 
engineering from Sungkyunkwan 
University, Seoul, South Korea, in 
2003, the M.S. degree in electrical 
engineering and computer science 
from Seoul National University, 

Seoul, South Korea, in 2005, and the Ph.D. degree in 
computer engineering from Texas A&M University, 
College Station, in 2009. From 2009 to 2010, he was a 
Senior R&D Staff Member with the Samsung Advanced 
Institute of Technology (SAIT), Gyeonggi, South Korea. 
Since 2010, he has been an Assistant Professor with the 
Department of Computer Science at Sookmyung 
Women’s University in Seoul, South Korea. His research 
interests include embedded systems, computer architecture, 
VLSI/system-on-chip design, and hardware/software co-
design. 

 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 1200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


