
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.11, NO.3, SEPTEMBER, 2011 http://dx.doi.org/10.5573/JSTS.2011.11.3.207

Reconfigurable Multi-Array Architecture for Low-
Power and High-Speed Embedded Systems

Yoonjin Kim

Abstract—Coarse-grained reconfigurable architecture
(CGRA) based embedded systems aims to achieve
high system performance with sufficient flexibility to
map a variety of applications. However, the CGRA
has been considered as prohibitive one due to its
significant area/power overhead and performance
bottleneck. In this work, I propose reconfigurable
multi-array architecture to reduce power/area and
enhance performance in configurable embedded
systems. The CGRA-based embedded systems that
consist of hierarchical configurable computing arrays
with varying size and communication speed were
examined for multimedia and other applications.
Experimental results show that the proposed
approach reduces on-chip area by 22%, execution
time by up to 72% and reduces power consumption
by up to 55% when compared with the conventional
CGRA-based architectures.

Index Terms—Embedded systems, Coarse-Grained
Reconfigurable Architecture (CGRA), computing
hierarchy, low power, high performance

I. INTRODUCTION

As the market pressure of embedded systems compels
the designer to meet tighter constraints on cost,
performance, and power, the application specific
optimization of a system becomes inevitable. On the

other hand, the flexibility of a system is also important to
accommodate rapidly changing consumer needs. To
accommodate these incompatible demands while
efficiently supporting the complex embedded-applications,
domain-specific design has emerged as a suitable solution
for embedded systems. Coarse-grained reconfigurable
architecture (CGRA)-based embedded system is the very
domain-specific design in that it can boost the
performance by adopting specific hardware engines
while it can be reconfigured to adapt to ever-changing
characteristics of the applications.

In spite of the above advantages, the use of CGRA-
based design has been prohibitive due to its significant
area/power consumption. The area and power overheads
are caused by large memory components and the
computing block of many processing elements. There is
also a performance bottleneck due to the conventional
communication structure between processor and
reconfigurable computing block that cannot adaptively
support various applications. Therefore, reducing
area/power and improving performance of CGRA-based
system has been a serious concern.

In this paper, I propose a new reconfigurable
computing hierarchy to design cost-effective CGRA-
based embedded systems. The computing hierarchy
consists of two reconfigurable computing blocks with
two types of communication structure together. Based on
the hierarchy, efficient communication structure between
processor and reconfigurable computing blocks can
reduce performance bottleneck in the CGRA-based
architecture. In addition, the proposed reconfigurable
array splits the computational resources into two groups
(primitive resources and critical resources). Critical
resources can be area-critical and/or delay-critical.

Manuscript received Jun. 10, 2011; revised July 22, 2011.
Dept. of Computer Science, Sookmyung Women’s University, Korea
E-mail : ykim@sookmyung.ac.kr

208 YOONJIN KIM et al : RECONFIGURABLE MULTI-ARRAY ARCHITECTURE FOR LOW- POWER AND ~

Primitive resources are replicated for each processing
element of the reconfigurable array, whereas area-critical
resources are shared among multiple basic PEs in order
to reduce more area of CGRA. Delay-critical resources
can be pipelined to curtail the overall critical path so as
to increase the system clock frequency. The two
computing blocks have shared pipelined-critical
resources. Such a sharing/pipelining structure provides
efficient communication interface between them with
reducing overall area.

This paper is organized as follows. After the related
work in Section II, I describe coarse-grained
reconfigurable architecture and loop pipelining as
preliminary in Section III. In Section IV, I present the
motivation of my approach. Then I propose the new
reconfigurable computing hierarchy for CGRA in section
V and the experimental results are given in Section VI.
Finally I conclude the paper in the Section VII.

II. RELATED WORKS

In [1], Hartenstein summarized many CGRAs that had
been suggested until 2001. Since then, many more new
CGRAs have been continuously proposed and evolved.
Most of them comprise of a fixed set of specialized
processing elements (PEs) and interconnection fabrics
between them. The run-time control of the operation of
each PE and the interconnection provides the
reconfigurability. However, such fixed architecture has
limitations in optimizing the cost and performance for
various applications. For example, Morphosys [2] consists
of 8 × 8 array of Reconfigurable Cell coupled with
Tiny_RISC processor through system bus. It shows good
performance for regular code segments in computation
intensive domains but requires large amount of area and
power consumption. XPP configurable system-on-chip
architecture [3] is another example. XPP has 4 × 4 or 8 ×
8 reconfigurable array and LEON processor with AMBA
bus architecture. A processing element of XPP is
composed of an ALU and some registers. Since the
processing elements do not include heavy resources, the
total area cost is not high but the range of applicable
domains is restricted. In addition, XPP shows significant
communication overhead between the processor and
RAA through the system bus. REMARC [5] is
reconfigurable Multimedia Array Coprocessor that

consists of a global control unit and an 8 × 8 array of
nano processors. The nano processors do not also include
heavy resources like XPP but it also restricts the range of
applicable domains. However, the communication with
main processor is faster than [2] or [3] because the
processor can access the register-set by coprocessor data
transfer instructions. However, limited size of the
register-set causes heavy registers-array traffic restricting
performance enhancement. ADRES [4] tightly couples a
VLIW processor and a reconfigurable matrix through
shared register file. The reconfigurable matrix is used to
accelerate the dataflow-like kernels in a highly parallel
way, whereas the VLIW processor executes the non-
kernel code by exploiting instruction-level parallelism.
Even though it also provides the fast communication
speed between VLIW and the matrix but the entire
structure is very dependent on VLIW processor
architecture and it require huge register file for the
communication. Therefore, the performance is limited by
size of the register file. In [12], authors have also used
reconfigurable computing cache that is different from my
proposed RCC. Their RCC block is LUT-based and used
for both memory and computing units.

III. PRELIMINARY

In this section, I briefly introduce coarse-grained
reconfigurable architecture and loop pipelining that is a
very representative computation model for CGRA. The
loop pipelining is an essential concept to explain
resource sharing and pipelining in CGRA described in
section V.

1. Coarse-Grained Reconfigurable Architecture

Typically, a CGRA-based system consists of a main

processor, a Reconfigurable Array Architecture (RAA),
and their interface as Fig. 1. The RAA has identical
processing elements (PEs) containing functional units
and a few storage units. The PEs in the array are
connected to the nearest neighbor PEs In addition, they
have limited interconnections between non-neighboring
PEs in order to perform column-wise or row-wise data-
transfer efficiently. These interconnections are
reconfigurable because input multiplexers in each PE
have inputs from other PEs. The data buffer provides

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.11, NO.3, SEPTEMBER, 2011 209

operand data to PE array through a high-bandwidth data
bus. The configuration cache (or context memory) is
composed of cache elements (CEs) and each CE provides
context word to configure each PE.

2. Loop Pipelining

To represent the characteristics of loop pipelining [16],

I examine the difference between SIMD and MIMD in
the RAA with a simple example. I assume a mesh-based
4 x 4 coarse-grained reconfigurable array of PEs, where a
PE is a basic reconfigurable element composed of an
ALU, an array multiplier, etc. and the configuration is
controlled by the words stored in the CE as shown in Fig.
2(a). In addition, I assume that Frame Buffer has simply
one set having three banks and two read-ports and one
write-port, supporting any combination of one-to-one
mapping between the three banks and the three buses.
Fig. 2(b) shows such a Frame Buffer and data bus
structure, where the PEs in each row of the array share
two read buses and one write bus. The 4 × 4 array has
nearest neighbor interconnections as shown in Fig. 2(c)
and each row or each column has a global bus as shown
in Fig. 2(d).

Consider a square matrix X and Y, both of order N, and
the computation of Z, an N element vector, given by

∑
−

=

×+×=
1

0
)}(),(),({()(

N

j
jCjiYjiXKiZ (1)

where i, j = 0,1,…,N-1, C(j) is a constant vector, and K
is a constant.

Consider N=4 for the mapping of the computation

defined in Eq. (1) on the 4 x 4 PE array and let the
computation be given as a C-program (Fig. 3(a)). It is
assumed that the input matrix X, Y, constant vector C and
output vector Z are stored in the arrays x[i][j], y[i][j], c[j]
and z[i], and z[i] is initialized to zero. Fig. 3(b) shows
parallelized code for execution on the array as shown in
Fig. 4, where I assume that matrix X and Y have been
loaded into the Frame Buffer (FB) and all of the
constants (C and K) have been already saved in a register
file of each PE. Vector Z is stored in the FB after it has
been processed by the PE array as shown in Fig. 4(a).

Processing
Element (PE)

Main
Processor

Main
memory data buffer

Context
registers

Reconfigurable Array Architecture (RAA)

CE

Configuration
Cache

CE CE CE

CE CE CE CE

CE CE CE CE

CE CE CE CE

Fig. 1. Block diagram of general CGRA.

CECE CECE CECE CECE

PE PE PE PE

CECE CECE CECE CECE

CECE CECE CECE CECE

CECE CECE CECE CECE

PE PE PE PE

PE PE PE PE

PE PE PE PE
(a)

Bank A

Bank B

Bank C

D
E
M
U
X

Frame Buffer PE Array

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

M
U
X

MeaningSymbol

bus tap to tap off partial bits of a bus

MeaningSymbol

bus tap to tap off partial bits of a bus

n‐bit

4n‐bit

4n‐bit

4n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

4n‐bit

(b)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

(c) (d)

Fig. 2. 4 x 4 reconfigurable array. (a) Distributed cache
structure, (b) Frame buffer and data bus, (c) Structure nearest
neighbor interconnection, (d) Global bus interconnection.

210 YOONJIN KIM et al : RECONFIGURABLE MULTI-ARRAY ARCHITECTURE FOR LOW- POWER AND ~

The SIMD-based scheduling enables parallel execution
of multiple loop iterations as shown in Fig. 4(c), whereas
the MIMD-based scheduling enables loop pipelining as
shown in Fig. 4(d). The first row of Fig. 4(c) represents
the direction of configuration broadcast. The second row
of Fig. 4(c) and the first row of Fig. 4(d) indicate the
schedule time in cycles from the start of the loop. In the
case of SIMD model, load and addition operations in PEs
are executed on all columns till 4th cycle with broadcast
in column direction. Then the PEs in a row perform the
same operation with broadcast in row direction. In the
case of loop pipelining, PEs in the first column perform
load and addition operations in the first cycle and then
perform multiplications in the second cycle. In the next
two cycles, the PEs in the first column perform
summations, while the PEs in the next column perform
multiplication and summation operations. When the first
column performs the multiplication/store operation in the
5th cycle, the fourth column performs multiplication.
Comparing the latency, SIMD takes three more cycles.
As shown in this example, SIMD model does not utilize
PEs efficiently since all data should be loaded before the
computations of the same type are performed
synchronously. On the other hand, since MIMD allows

any type of computations at any moment, it does not
need to wait for a specific data to be loaded but can
process other data that is readily available. Loop
pipelining is an effective way of exploiting this fact,
thereby utilizing PEs better. The loop pipelining in the
example of Fig. 4 improves the performance by three
cycles compared to the SIMD, but for loops with more
frequent memory operations, it will have higher
performance improvement.

x[3][3]
x[3][2]
x[3][1]
x[3][0]

x[2][3]
x[2][2]
x[2][1]
x[2][0]

x[1][3]
x[1][2]
x[1][1]
x[1][0]

x[0][3]
x[0][2]
x[0][1]
x[0][0]

x[3][3]
x[3][2]
x[3][1]
x[3][0]

x[2][3]
x[2][2]
x[2][1]
x[2][0]

x[1][3]
x[1][2]
x[1][1]
x[1][0]

x[0][3]
x[0][2]
x[0][1]
x[0][0]

z[3]
z[2]
z[1]
z[0]

z[3]
z[2]
z[1]
z[0]

Bank A

Bank C

y[3][3]
y[3][2]
y[3][1]
y[3][0]

y[2][3]
y[2][2]
y[2][1]
y[2][0]

y[1][3]
y[1][2]
y[1][1]
y[1][0]

y[0][3]
y[0][2]
y[0][1]
y[0][0]

y[3][3]
y[3][2]
y[3][1]
y[3][0]

y[2][3]
y[2][2]
y[2][1]
y[2][0]

y[1][3]
y[1][2]
y[1][1]
y[1][0]

y[0][3]
y[0][2]
y[0][1]
y[0][0]

Bank A

(a)

CECE

CECE CECE CECE

PE PE PE PE

CECE

CECE

CECE

CECE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Column Direction

Row Direction

(b)

Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST

Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST

(c)

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+ ×/ST

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+ ×/ST

LD/+ Data Load and Addition

NOP No Operation

LD/+ Data Load and Addition

NOP No Operation

Symbol MeaningSymbol Meaning

× Multiplication× Multiplication

1+, 2+ Addition1+, 2+ Addition

×/ST Multiplication and Store×/ST Multiplication and Store

(d)

Fig. 4. Execution model for CGRA. (a) Operand and result
data in FB, (b) Configuration broadcast, (c) SIMD model, (d)
Loop pipelining schedule.

for (i = 0; i <= 3; i = i+1)
{

for (j = 0; j <= 3; j = j+1)
z[i] = (x[i][j]+y[i][j])*c[j] + z[i];

z[i] = K* z[i];
}

(a)

for (i = 0; i <= 3; i = i+1)
{

t1 = x[i][0]+y[i][0] ;
t2 = x[i][1]+y[i][1] ;
t3 = x[i][2]+y[i][2] ;
t4 = x[i][3]+y[i][3] ;

t1 = t1*c[0];
t2 = t2*c[2];
t3 = t3*c[3];
t4 = t4*c[4];

tmp1 = t1+ t2 ;
tmp2 = t3+ t4 ;

z[i] = tmp1+ tmp2 ;

z[i] = K*z[i]
}

LD/+

×

2+

1+

×/ST

(b)

Fig. 3. C-code of Eq. (1). (a) Before parallelization, (b) After
parallelization.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.11, NO.3, SEPTEMBER, 2011 211

When mapping kernels onto the reconfigurable
architecture with loop pipelining, we can consider two
mapping techniques: spatial mapping and temporal
mapping. Fig. 5 shows the difference between the two
techniques with the previous example. In the case of
temporal mapping (Fig. 5(a)), like the previous illustration
of loop pipelining in Fig. 4(d), a PE executes multiple
operations within a loop by changing the configuration
dynamically. Therefore, complex loops having many
operations with heavy data dependencies can be mapped
better in temporal fashion, provided that the configuration
cache has sufficient layers to execute the whole loop body.

In the case of spatial mapping, a loop body is spatially
mapped onto the reconfigurable array implying that each
PE executes a fixed operation with static configuration as
shown in Fig. 5(b). The advantage of spatial mapping is
that it may not need reconfiguration during execution of
a loop. As can be seen from Fig. 5, spatial mapping
needs only one or two cache layers whereas temporal
mapping needs 4 cache layers. One disadvantage of
spatial mapping is that spreading all the operations of the
loop body over the limited reconfigurable array may
require too many resources. Moreover, data dependencies
between the operations should be taken care of by
allocating interconnect resources to provide a path and
inserting registers (or using PEs) in the path to
synchronize the arrival of operands. Therefore, if the
loop is simple enough to map the loop body to the
limited reconfigurable array and there is not much data
dependency between the operations, then spatial mapping

is the right choice. The effectiveness of the mapping
strategies depends on the characteristics of the target
architecture as well as the target application.

IV. MOTIVATION

1. Limitation of Existing Communication Structures

A typical coarse-grained reconfigurable architecture

consists of a microprocessor, a Reconfigurable Array
Architecture (RAA), and their interface. I can consider
three types of organizations in connecting RAA to the
processor. First, the array can be connected to the
processor through a system bus as an ‘Attached IP’ [2, 3,
8] shown in Fig. 6(a). In this case, the main benefit of
this organization is the ease of constructing such a
system using a standard processor without modifying the
processor and its compiler. In addition, large data buffer
of RAA can be used to support applications having large
inputs/outputs. However, the speed improvement using
the RAA may have to compensate for significant
communication overhead between the processor and
RAA through system bus as well as SRAM-based large
data buffer in RAA consumes much power. Second type
of organization involves the array connected with the
processor as a ‘Coprocessor’ [5-7] shown in Fig. 6(b). In
this case, the standard processor does not change and the
communication is faster than ‘Attached IP’ type
interconnects because the coprocessor register-set is used
as data buffer of the RAA and the processor can access
the register-set by coprocessor data transfer instructions.
In addition, the register-set consumes less power than the
data buffer of ‘Attached IP’. Since the size of the

Distributed Cache with 1 or 2 layers

NOP

NOP

+

NOP

NOP

+

+

NOP

×

×

×

×

NOP

NOP

×ST

NOP

LD/+

1+
2+

LD/+

×

LD/+

×

×/ST

LD/+

2+
×/ST

Distributed Cache with 5 Layers

×/ST

Operation : Operation executed at the 5th cycle

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+ ×/ST

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+ ×/ST

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP

×

×/ST
2+

1+
2+
1+ 1+

×

×/ST

LD/+

NOP

NOP

×/ST

NOP

*1+ 2+

NOP

+

+

NOP

NOP

NOP

+

NOP

×

×

×

×

×

(a) (b)

Fig. 5. Comparison between (a) Temporal mapping, (b) Spatial
mapping.

System bus

Processor Memory

RAA

 System bus

Processor

Memory

RAA

Co‐processor
interface

MUX unit

(a) (b)

Processor

RAA Memory

(c)

Fig. 6. Basic types of RAA coupling. (a) Attached IP, (b)
Coprocessor, (c) Functional unit.

212 YOONJIN KIM et al : RECONFIGURABLE MULTI-ARRAY ARCHITECTURE FOR LOW- POWER AND ~

register-set is fixed by the processor ISA, it creates
performance bottleneck for registers-PE array traffic due
to applications having large inputs/outputs run on the
RAA. In the third type of organization, the array is
placed inside the processor like a ‘FU (Functional Unit)’
[4, 10, 11] as shown in Fig. 6(c). In this case, the
instruction decoder issues special instructions to perform
specific functions on the RAA as if it were one of the
standard functional units of the processor. In this case,
the communication speed is faster than ‘Coprocessor’
and power consumption of the data storage is less than
‘Attached IP’ because the processor register-set is used
as data buffer of the RAA and the processor can directly
access the register-set by the processor instructions.
However, standard processor needs to be modified for
due to integration with RAA and its compiler should be
also changed. The performance bottleneck is caused by
limited size of the processor registers as in the case of
‘Coprocessor’ type organization. Table 1 shows a
summary about advantage and disadvantage of three
coupling types.

2. RAA-based Computing Hierarchy

As mentioned in the previous section, basic three types

of RAA organizations show advantage and disadvantage
according to the input/output size of the applications. It
shows the existing coupling structure with a conventional
RAA cannot be flexible to support various applications
with sacrificing performance. In addition, such an RAA
structure cannot efficiently utilize PE arrays and data
buffers leading to high power consumption.

I hypothesize that if CGRA can maintain a computing
hierarchy of its RAAs having different size and
communication speed, the CGRA-based embedded

system can be optimized for its performance and power.
It is because such a hierarchical arrangement of the RAA
can optimize the communication latency and efficiently
utilize functional resources of PE array in various
applications. In this paper I propose a new CGRA-based
architecture that supports such a RAA-based computing
hierarchy.

V. COMPUTING HIERARCHY IN CGRA

In order to implement efficient CGRA-based embedded
systems1, I propose a new computing hierarchy consisting
of two computing blocks using two types of coupling
structures together – ‘Attached IP’ and ‘Coprocessor’. In
this organization, a general RAA having large size PE
array is connected to a system bus and another is a small
RAA composed of small PE array coupled with a
processor through coprocessor interface. I call the small
RAA reconfigurable computing cache (RCC) because it
plays an important role in enhancing performance and
power of the entire CGRA like data cache. The RCC and
the RAA share critical resources and such a sharing
structure provides efficient communication interface
between two computing blocks. The proposed approach
ensures that the RCC and the RAA are efficiently utilized
to support variable size of inputs and outputs for variety
of applications. In subsection V.1 and V.2, I describe
computing hierarchy and resource sharing/pipelining in
RCC and RAA in detail. Then I show how to optimize
computing flow based on reconfigurable computing
cache according to the applications in subsection V.3.

1. Computing Hierarchy – Size and Speed

A CGRA-based computing hierarchy is formed by

splitting a conventional computing RAA block into two
computing blocks – RCC with small PE array and RAA
having large PE array as shown in Fig. 7(a). The RCC is
coupled with coprocessor interface and the RAA is
attached to a system bus as shown in Fig. 7(b). The RCC
provides fast communication with the processor and

1 I exclude the type of ‘Functional Unit’ from the proposed computing

hierarchy because it requires the modification of processor and its
compiler and entire CGRA is heavily dependent on the specific
processor architecture. Our proposed approach aims to implement
entire systems allowing any combination of standard processors and
RAAs.

Table 1. Comparison of the basic coupling types

Coupling
type

*Comm’
power

**Comm’
speed

Performance
Bottleneck

Application
feasibility

Attached IP high slow communication
through system bus

large size of
input/output

Coprocessor low fast
limited size of
coprocessor
register-set

small size of
input/output

Functional
unit low very

fast
limited size of

processor registers
small size of
input/output

* Comm’ power: power consumption by data-storage (data buffer or
registers)

** Comm’ speed: Communication speed between processor and RAA

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.11, NO.3, SEPTEMBER, 2011 213

offers low power consumption by using coprocessor
register-set and small array size. Therefore the RCC can
enhance performance and reduce power consumption
when small applications run on CGRA. If RCC is not
sufficient to support computing requirements of in
applications, intermediate data from the RCC can be
moved to the RAA through the interconnections as
shown in Fig. 8. Such interconnections between the two
blocks offer flexibility in migrating computing demands
from one to another. Such computing flow may help to
optimize performance and power for the applications
having various sizes of inputs/outputs whereas the
existing models show performance bottlenecks caused by
the communication overheads or the limited size of the
data-storages as shown in Table 1. I have described the
computing flow optimization in detail in subsection V.3.

2. Resource Sharing and Pipelining in RCC and RAA

I have so far presented two factors (speed and size) in

building computing hierarchy for CGRAs similar to

memory hierarchy. It seems a small portion of RAA has
been detached from large CGRA block and placed as the
fast RCC block adjacent to the processor coupled with
coprocessor interface. However, only considering two
factors is not sufficient to design compact RCC for
power and area benefits. This is because computing
blocks can have diverse functionality which affects the
system capabilities. The functionality of computing blocks
is specified by functional resources of its PE such as
adder, multiplier, shifter, logic operations etc. Therefore,
it is necessary to examine how to select the functionalities
of RCC and RAA. This leads to further studies on
resource assignment between RCC and RAA. In the next
subsection, I describe basic techniques to efficiently assign
the resources between RCC and RAA - resource sharing
and pipelining in CGRA [9]. Although these techniques
are well known and widely used in other digital systems
design, to the best of my knowledge, [9] is the first
attempt to apply them to an RAA. Based on the basic
techniques, I present an extension of resource sharing
and pipelining in RCC and RAA in subsection V.2.2.

A. Resource Sharing and Pipelining

Fig. 9 shows the snapshot taken at the 5th cycle of

execution of the previous example for three cases as
shown in Fig. 5: (a) SIMD and two cases of loop
pipelining - (b) temporal mapping and (c) spatial
mapping. The operations in the 5th cycle for (a), (b) and
(c) include multiplication and therefore the multipliers in
the PE array are to be used. In the case of SIMD, all PEs
perform multiplication requiring all of them to have
multipliers, thereby increasing the area cost of the PE
array. However, in the case of temporal mapping, only
PEs in the 1st column and the 4th column perform
multiplication while PEs in the 2nd and 3rd columns
perform addition. In the spatial mapping, only PEs in the
1st and 2nd columns perform multiplication. As can be
observed, in the temporal mapping and spatial mapping,
there is no need for all PEs to have the same functional
resources at the same time. This allows the PEs in the
same column or in the same row to share area-critical
resources. Fig. 10 shows four PEs in a row sharing two
multipliers2 at the 5th cycle in temporal mapping and

2 Since multipliers take much more area than other resources, we

classify them as critical resources.

nxn PE Array

L1
nxm
PE

Array

L2 nx(n‐m)
PE Array

Processor

RCC

RAA

System Bus

Co‐proc’
InterfaceData

Buffer
Config’
Cache

Data
Buffer

Con‐
Fig’
Cac‐
he

CREG

Reconfigurable Computing
Cache RAA

Conventional RAA

Config’
Cache

Coprocessor
Registers

(a) (b)

Fig. 7. Computing hierarchy of CGRA. (a) Size, (b) Speed.

On‐chip bus

Processor MemoryCREG

MUX unit

DMA

Data
Buffer

Reconfigurable
Computing cache

L2 PE Array

L1
PE

Array

Config’
Cache

RAA

Config’
Cache

Coprocessor
Registers

Fig. 8. CGRA configuration with RCC and RAA.

214 YOONJIN KIM et al : RECONFIGURABLE MULTI-ARRAY ARCHITECTURE FOR LOW- POWER AND ~

spatial mapping. I depict only the connections related to
resource sharing.

Fig. 11 depicts the detailed connections for multiplier
sharing. The two n-bit operands of a PE are connected to
the bus switch. The dynamic mapping of a multiplier to a
PE is determined at compile time and the information is
encoded into the configuration word. At run-time, the
mapping control signal from the configuration word is
fed to the bus switch and the bus switch decides where to
route the operands. After the multiplication, the 2n-bit
output is transferred from the multiplier to the original

issuing PE via the bus switch.
If there is a critical functional resource with long

latency in a PE, the functional resource can be pipelined
to curtail the critical path. Resource pipelining has clear
advantage in loop pipelining execution because
heterogeneous functional units with different delays can
run at the same time. In the traditional design (Fig. 12(a)),
the latency of a PE is fixed but in the pipelined PE design
(Fig. 12(b)), we allow multi-cycle operations and so the
latency can vary depending on the operation. This helps
increase the system clock frequency.

If a critical functional resource such as a multiplier has
both large area and long latency, the resource sharing and
resource pipelining can be applied at the same time in
such a way that the shared resource executes multiple
operations at the same time in different pipeline stages.
With this technique, the conditions for resource sharing
are relaxed and so the critical resources are utilized more
efficiently. Fig. 13 shows this situation. Through the
pipelining, we can reduce the number of multipliers from
8 to 4 to perform the execution without any stall. This is
because two PEs sharing one pipelined multiplier can
perform two multiplications at the same time using
different pipeline stages.

×/ST

×

×

×

×

+

+ +

Col#1 Col#2 Col#3 Col#4Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP

(a)

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

Col#1 Col#2 Col#3 Col#4Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST

Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST

(b)

+

+

+

×

×

×

×

Col#1 Col#2 Col#3 Col#4
Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+ ×/ST

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+ ×/ST

×/ST

(c)

Fig. 9. Snapshots of three mappings. (a) SIMD, (b) Temporal
mapping, (c) Spatial mapping.

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP
×/ST

SW

SW

SW

SW

×

×

×

×

SW

SW

SW

SW

+

+

SW

SW

SW

SW

+

MULTMULT SW

SW

SW

SW

Col#1 Col#2 Col#3 Col#4

MULTMULT

MULTMULT

MULTMULT

MULTMULT

MULTMULT

MULTMULT

MULTMULT

(a)

Col#1 Col#2 Col#3 Col#4

×/ST×/ST

SW

SW

SW

SW

+

SW

SW

SW

SW

+

+

SW

SW

SW

SW

×

×

×

×

MULTMULT SW

SW

SW

SW

MULTMULT

MULTMULT

MULTMULT

MULTMULT

MULTMULT

MULTMULT

MULTMULT

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ × /ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ × /ST NOP NOP

Column#3 LD/+ × 1+ 2+ × /ST NOP

Column#4 LD/+ × 1+ 2+ × /ST

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ × /ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ × /ST NOP NOP

Column#3 LD/+ × 1+ 2+ × /ST NOP

Column#4 LD/+ × 1+ 2+ × /ST

(b)

Fig. 10. Eight multipliers shared by sixteen PEs. (a) Temporal
mapping, (b) Spatial mapping.

MULTMULT
ctrl

MULTMULT

2n‐bit

n‐bit

2n‐bit

Bus
switch

PE

CECE

n‐bit

n‐bit

2n‐bit

Fig. 11. The connection between a PE and shared multipliers.

Critical
Resource

Output Reg’

Front

End

Neighbor PE Neighbor PE

Two cycles operation One cycle operation

Output Reg’

Critical path

Reg

Critical path is
seperated into two

Output Reg’

Output Reg’

One cycle operation

(a) (b)
Fig. 12. Critical paths. (a) General PE, (b) Pipelined PE.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.11, NO.3, SEPTEMBER, 2011 215

B. Functional Resource Assignment Between L1 PE Array
and L2 PE Array

First of all, I can classify the functional resources into

two groups: primitive resources and critical resources.
Primitive resources are basic functional units such as
adder/subtractor and logical operators. Critical resources
are area/delay-critical ones such as multiplier and divider.
Based on the classification, let us consider two cases of
the functional resource configurations as shown in Fig.
14. Fig. 14(a) shows hierarchical functionality that
indicates L1 PE array has primitive resources and L2 PE
array includes critical resources as well as primitive
resources. The Fig. 14(b) shows identical functionalities
both in the L1 and L2 PE arrays. In the case of Fig. 14(a),
the RCC with L1 PE array is relatively lightweight
computing block compared to the RAA with L2 PE array.
Therefore, the RCC can perform small applications
having only primitive operations with low power
consumption. However, it causes ‘lack of resource’
problem when applications demand critical operations. In
Fig. 14(b) L1 and L2 PE arrays have identical
functionality with area and power overheads.

To prevent such extreme cases, I propose resource
sharing and pipelining for the RCC and the RAA based
on subsection V.2.1. L1 and L2 PE array have the same
primitive resources and shared the pipelined critical
resources as shown in Fig. 15. Here the RCC and the

RAA basically perform the primitive operations and their
functionality will include the critical operations using the
shared resources. Fig. 16 shows interconnection structure
with shared critical resources along with RCC and RAA.
PEs in the same row of the L1 nd L2 array share the
pipelined critical resources in the same manner as shown
in subsection V.2.1. Such a structure avoids the ‘lack of
resource’ problem in Fig. 14(a) and this structure is more
area and power-efficient than Fig. 14(b) because the
number of critical resources is reduced and the critical
resources taken out of L1 and L2 PE array are not

Cycle Time 1 2 3 4 5 6 7 8 9 10

Column#1 LD/+ LD/+ LD/+ LD/+ NOP 1×
2×/ST
/1×

2×/ST
/1×

2×/ST
/1×

2×/ST

Column#2 1×
2×/1
×

2×/1
×

2×/1
×

2× NOP NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP NOP

Cycle Time 1 2 3 4 5 6 7 8 9 10

Column#1 LD/+ LD/+ LD/+ LD/+ NOP 1×
2×/ST
/1×

2×/ST
/1×

2×/ST
/1×

2×/ST

Column#2 1×
2×/1
×

2×/1
×

2×/1
×

2× NOP NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP NOP

1×

SW

SW

SW

SW

2×

2×

2×

2×

SW

SW

SW

SW

+

+

SW

SW

SW

SW

+

SW

SW

SW

SW

Col#1 Col#2 Col#3 Col#4

MULTMULT

MULTMULT

MULTMULT

MULTMULT

(a)

Cycle Time 1 2 3 4 5 6 7 8 9 10

Column#1 LD/+ 1× 2× 1+ 2+ 1× 2×/ST NOP NOP NOP

Column#2 LD/+ 1× 2× 1+ 2+ 1× 2×/ST NOP NOP

Column#3 LD/+ 1× 2× 1+ 2+ 1× 2×/ST NOP

Column#4 LD/+ 1× 2× 1+ 2+ 1× 2×/ST

Cycle Time 1 2 3 4 5 6 7 8 9 10

Column#1 LD/+ 1× 2× 1+ 2+ 1× 2×/ST NOP NOP NOP

Column#2 LD/+ 1× 2× 1+ 2+ 1× 2×/ST NOP NOP

Column#3 LD/+ 1× 2× 1+ 2+ 1× 2×/ST NOP

Column#4 LD/+ 1× 2× 1+ 2+ 1× 2×/ST

Col#1 Col#2 Col#3 Col#4

1×

SW

SW

SW

SW

+

SW

SW

SW

SW

+

+

SW

SW

SW

SW

2×

2×

2×

2×

SW

SW

SW

SW

MULTMULT

MULTMULT

MULTMULT

MULTMULT

(b)
1×: First pipeline stage on multiplication, 2×: Second pipeline stage on
multiplication

Fig. 13. Loop pipelining with pipelined multipliers. (a) Temporal
mapping, (b) Spatial mapping.

L1 PE Array L2 PE Array

PE

PE

PE

ADD, SUB, AND, OR, XOR

L1 PE Array

ADD, SUB, AND, OR, XOR,
MULT, SHIFT

L2 PE Array

ADD, SUB, AND, OR, XOR
MULT, SHIFT

ADD, SUB, AND, OR, XOR,
MULT, SHIFT

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR : critical resource

 (a) (b)

Fig. 14. Two cases of functional resource assignment. (a) Hierarchical
functionality, (b) Identical functionality.

PE

PE

PE

ADD, SUB,
AND, OR,

XOR

L1 PE Array L2 PE Array

CRCR

CRCR

CRCR

PE

PE

PE PE

PE PE

PE PE PE

MULT,
SHIFT

ADD, SUB,
AND, OR,

XOR

Shared Critical
Resources

CRCR : pipelined critical resource

Fig. 15. Critical resource sharing and pipelining in L1 and L2 PE
Array.

PE

L1 PE Array

Demux
Mux

PE

PEPE

PEPE

PEPE

L2 PE Array

CRCR

Interconnect for
Communication

between L1 and L2
PE Array

On‐chip bus

Processor MemoryCREG

MUX unit

DMA

Data
Buffer L2 PE Array

L1
PE

Array

Config’
Cache

RAA

Config’
Cache

Shared
critical
resources

RCC

(a) (b)

Fig. 16. Interconnection structure among RCC, shared critical
resources and L2 PE Array. (a) Entire structure, (b) Interconnection
structure.

216 YOONJIN KIM et al : RECONFIGURABLE MULTI-ARRAY ARCHITECTURE FOR LOW- POWER AND ~

affected by unnecessary switching activity caused by
other resources. In addition, interconnections for resource
sharing can be also utilized for communication interface
between the RCC and the RAA by adding multiplexer
and de-multiplexer between front and end of the critical
resources as shown in Fig. 16(b).

C. Computing Flow Optimization

Based on the proposed CGRA structure, I can classify

four cases of optimized computing flow to achieve low
power and high performance. Fig. 17 shows such four
computing flows on the proposed CGRA according to
variance of input and output size of applications – In
subsection V.1.2, Table 3 shows that I can select the
optimal case among the proposed computing flows for
several applications with variance in their input/output
size. All of the cases show that shared critical resources
are used as needed because they are only utilized when
applications have the operations requiring the critical
resources. Fig. 17(a) shows computing flow when
application has the smallest inputs and outputs. In this
case, only RCC functional units are used to execute the
application while the RAA is disabled to reduce power
consumption. However, if the application has larger
inputs and outputs than Fig. 17(a), the computing flow
can be extended to L2 PE array as shown in Fig. 17(b).
Even though L2 PE array is used for this case, data
buffer of the RAA is not used because the coprocessor
register-set (CREG) is sufficient to save the all of the
inputs or outputs. The next case is that when RAA is
used with RCC because of large inputs and small outputs
as shown in Fig. 17(c). In this case, data buffer of the
RAA receives inputs using DMA which is more efficient
for overall performance than CREG. This is because
insufficient CREG resource for large inputs causes
performance bottleneck with heavy registers-PE array
traffic. Therefore, the L2 PE array may be used first for
running such application and the L1 PE array can be
utilized for enhancing parallelized execution as needed.
However, the outputs are stored on CREG because their
size is small. Finally, Fig. 17(d) shows a case of RAA
used with L1 PE array with large inputs and outputs. To
avoid heavy registers-PE array traffic by the large
input/output size, the data buffer with DMA is used and
L1 PE array can be optionally utilized for enhancing

parallelized execution. In summary, the computing flow
on the proposed CGRA can be adapted according to the
input/output size of applications. It is more power-
efficient than using a conventional CGRA by separated
computing blocks with sharing critical resources. This
way is only necessary computing blocks are utilized. In
addition, computing flow with supporting two
communication interfaces reduces power and enhances
performance.

VI. EXPERIMENTS AND RESULTS

1. Experimental Setup

A. Architecture Implementation

To demonstrate the effectiveness of the proposed

CREG L1 PE
Array

CREGInput
Data

Input
Data

Output
Data

Output
Data

Shared critical
resources

(a)

CREG
L1 PE
Array

Input
Data

Input
Data

Input
Data

Input
Data

CREG
Input
Data

Input
Data

Input
Data

Output
Data

Shared critical
resources L2 PE Array

(b)

L1 PE
Array

L2 PE Array
Data
Buffer

Input
Data

Input
Data

Input
Data

Input
DataInput

Data
Input
Data

Input
Data

CREG
Input
Data

Input
Data

Input
Data

Output
Data

Shared critical
resources

DMA

(c)
L1 PE
Array

L2 PE Array
Data
Buffer

Input
Data

Input
Data

Input
Data

Input
DataInput

Data
Input
Data

Input
Data

Shared critical
resources

DMA
Data
Buffer

Input
Data

Input
Data

Input
Data

Input
DataInput

Data
Input
Data

Output
Data

DMA

(d)

: Optional block
Fig. 17. Four cases of computing flow according to the
input/output size of application. (a) Smallest inputs and outputs
(STIO), (b) Small inputs and outputs (SIO), (c) Large inputs
and small outputs (LISO), (d) Large inputs and outputs (LIO).

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.11, NO.3, SEPTEMBER, 2011 217

RCC-based CGRA, we have designed three different
organizations of CGRA with RT-level implementation
using VHDL as shown in Table 2.

In addition, for resource sharing of RCC-based CGRA,
two pipelined multipliers and two shifters are shared by
PEs in the same row of L1 and L2 PE array whereas
conventional two types of CGRA do not support such a
resource sharing and pipelining.

The architectures have been synthesized using Synopsys
Design Compiler with TSMC 0.18 μm technology.
Synopsys PrimePower tools have been used for gate-
level simulation and power estimation. To obtain the
power consumption data, we have used the applications
in Table 2 for simulation with operation frequency of 70
MHz and typical case of 1.8 V Vdd and 27 .℃

B. Evaluated Applications

Evaluated applications are composed of real multimedia

applications and benchmarks. We have analyzed the
input/output size and operation-types in the applications
to identify specific computing flow in Fig. 17. Table 3

shows the selected applications and the optimal computing
flows for them.

I have used automatic compilation flow [17] to map
applications onto the three architectures for supporting
loop pipelining [16]. Binary context words are
automatically generated from the compiler for temporal
mapping. The timing and control information that is used
to operate execution controller is manually optimized and
the final encoded data is loaded onto registers of the
execution controller.

2. Results

A. Area Cost Evaluation

Table 4 shows area cost evaluation for the two cases.

‘Base 8 × 8’ means 8 × 8 PE array included in ‘Attached
IP’ and ‘Coprocessor’ type CGRA. ‘Proposed’ means L1
and L2 PE array included in the proposed RCC-based
CGRA. Even though interconnection area of the
proposed model increases because of resource sharing
structure, entire area of the proposed one is reduced by
22.68% because it has less critical resources than base 8
× 8 PE array.

B. Performance Evaluation

The synthesis results show that the proposed PE array

has reduced critical path delay (5.12 ns) compared to the
base PE array (8.96 ns). This is because pipelined
multipliers are excluded from the original set of critical
paths. Based on the synthesis results, we evaluate
execution times of the selected applications on three
cases of CGRA as shown in Fig. 18. The execution times
are cycle–accurate because they have been obtained by
running applications with designed RTL code on a HDL
simulator. They include communication time between
memory/processor and the RAA or RCC. Each
application is executed on the RCC-based CGRA in the
manner of selected computing flow as shown in Table 3

Table 4. Area cost comparison

Gate Equivalent PE
Array

No’ of
PEs

No’ of
MULTs

No’ of
SHTs Interconnect Logic Total

R(%)

Base 8 × 8 64 64 64 151234 478908 630143 -
Proposed 64 16 16 161311 325908 487219 22.68

Table 2. Comparison of the basic coupling types

CGRA PE array Data storage
Attached IP 8 × 8 PE array 6 KB data buffer
Coprocessor 8 × 8 PE array 256-byte coprocessor register-set

Proposed
RCC-based

8 × 2 L1 PE array and
8 × 6 L2 PE array

4 KB data butter and 256-byte
coprocessor register set

(Leon2 processor [15] is used as main processor)

Table 3. Application characteristics

Applications SR Flow Benchmarks SR Flow
(H.263) 8 x 8 DCT SIO *256-point FFT LISO
(H.263) 8 x 8 IDCT SIO *256-tap FIR LISO
(H.263) 8 x 8 QUANT SIO *Complex Mult LISO
(H.263) 8 x 8
DEQUANT SIO **State STIO

(H.263) SAD - LISO **Hydro STIO
(H.264) 4 x 4 ITRANS STIO **Tri-Diagonal LIO
(H.264) MSE LISO **First-Diff - STIO
(H.264) MAE - LISO **ICCG STIO
(H.264) 16 x 16 DCT LISO **Inner Product LIO
8 x 8 * 8 x 1
Matrix-Vector
Multiplication

 SIO

16 x 16 * 16 x 1 Matrix-
Vector Multiplication LISO

8 x 8 Matrix
Multiplication SIO

16 x 16 Matrix
Multiplication LISO

*: DSPstone benchmarks [13]
**: Livermore loop benchmarks [14]
SR:‘ ’means critical resources are

used for the application.
STIO: smallest inputs and outputs
SIO: small inputs and outputs
LISO: large inputs and small

outputs
LIO: large inputs and outputs

218 YOONJIN KIM et al : RECONFIGURABLE MULTI-ARRAY ARCHITECTURE FOR LOW- POWER AND ~

– all of the applications are classified under 4 cases of
computing flow (STIO, SIO, LISO and LIO). In the case
of STIO and SIO, performance improvement compared
with ‘Coprocesssor’ type is relatively less (30.31%~
37.03%) than LIO and LISO (60.94%~72.92%). This is
because the improvements of STIO and SIO are achieved
by only reduced critical path delay whereas the
improvements of LIO or LISO are achieved by avoiding
heavy coprocessor registers-PE array traffic as well as
reduced critical path delay. However, compared with
‘Attached-IP’ type, STIO and SIO achieve much more
performance improvement (56.60%~67.90%) whereas
LISO and LIO show the improvement of (42.05%~
59.85%). This is because STIO and SIO do not use data
buffer of the RAA causing communication overhead on
system bus.

C. Power Evaluation

Fig. 19 shows the comparison of power consumptions

in three different organizations of CGRA. First of all, the
proposed L1 and L2 PE array is more power-efficient
than the base PE array because of the reduced critical
resources. With such a power-efficient PE array, the
amount of power saving depends on the selected
computing flow for the application. The most power-
efficient computing flow is STIO that shows relatively
much power saving (40.44%~55.55%) compared to other
cases (7.93%~29.67%) because the STIO does not use
the RAA - specially, ‘First_Diff’ shows the highest
power saving ratio of 51.71%/55.55% because of not
using the shared critical resources. The next power-
efficient model is SIO showing power saving (23.67%~
29.67%). This is because the SIO computing flow does
not use data buffer of the RAA whereas LISO
(7.93%~26.03%) and LIO (17.13%~22.91%) utilizes the
data buffer for input data or output data. Finally, power
saving of LISO and LIO is mostly achieved by reduced
critical resources and by not activating L1 PE array.

72.92%
/49.46%

36.48%
/56.60%

61.50%
51.78%/

36.88%
/62.30%

61.85%
/50.45%65.15%

/57.06%

32.47%
/66.84%

64.93%
/58.92%

36.26%
/63.01%

38.53%
/64.41%

36.51%
/63.05%

37.03%
/62.22%

65.08%
/57.43%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

(H
.26
3)8
X8
 D
CT

(H
.26
3)
8X
8 I
DC
T

(H
.26
3)8
X8
 Q
UA
NT

(H
.26
3)
8X
8 D
EQ
UA
NT

(H
.26
3)S
AD

(H
.26
4)4
X4
 IT
RA
NS

(H
.26
4)
M
SE

(H
.26
4)M

AE

(H
.26
4)
 16
X1
6 D
CT

8X
8*
8X
1_
M
VM

16
X1
6*
16
X1
_M
VM

8x
8 M

M

16
x1
6 M

M

Execution Time (ns) Proposed

Coproc‐Type

IP‐Type

SIO SIO

SIO

SIO
SIO

LISO
LISO LISO

LISO

LISO

LISO

SIO

STIO

(a)

60.94%
/52.59%

63.37%
/59.85% 61.76%/

52.61%

64.68%
/42.05% 63.23%

/42.09%

30.31%
/67.90%

34.86%
/66.42%

33.13%
/65.84%

35.96%
/66.23%

0

2000

4000

6000

8000

10000

12000

14000

25
6‐
po
int
 FF
T

25
6‐
tap
 FI
R

Co
m
ple
x M

ult
Sta
te

Hy
dr
o

Tr
i‐D
iag
on
al

Fir
st‐
Di
ff

ICC
G

Inn
er
 Pr
od
uc
t

Execution Time (ns)

Proposed

Coproc‐Type

IP‐Type

LISO

LISO LISO

STIO

LIO

STIO
STIO

STIO

LIO

(b)

A%/B%: A% means reduced execution time ratio compared with
Coproc-Type and B% means reduced execution time ratio compared
with IP-Type.

Fig. 18. Performance comparison. (a) Real applications, (b)
Benchmarks.

17.22%
/28.90%

23.67%
/29.67%

14.72%
/25.70%24.04%

/27.59%

21.39%
/25.72%

10.62%
/23.52%

7.93%
/20.51%

43.99%
/46.67%

10.16%
/23.11%

24.22%
/27.82%

24.15%
/26.89%

24.23%
/26.98%

0

50

100

150

200

250

300

(H
.26
3)
8X
8 D
CT

(H
.26
3)
8X
8 I
DC
T

(H
.26
3)
8X
8 Q

UA
NT

(H
.26
3)
8X
8 D
EQ
UA
NT

(H
.26
3)
SA
D

(H
.26
4)
4X
4 I
TR
AN
S

(H
.26
4)
MS
E

(H
.26
4)
M
AE

(H
.26
4)
 16
X1
6 D
CT

8X
8*
8X
1_
M
VM

16
X1
6*
16
X1
_M
VM

8x
8 M

M

16
x1
6 M

M

Power (mW)

Proposed

Coproc‐Type

IP‐Type

24.22%
/27.96%

SIO SIO SIO SIO
SIO

LISO
LISO LISO LISO

LISO

LISO SIO
STIO

(a)

15.55%
/25.58%

15%
/25.61%

12.09%
/26.03%

43.11%
/46.11%

40.44%
/45.54%

17.13%
/19.65% 51.71%

/55.55%

44.74%/
48.57% 22.91%

/22.43%

0

50

100

150

200

250

300

256‐point
FFT

256‐tap
FIR

Complex
Mult

State Hydro Tri‐
Diagonal

First‐Diff ICCG Inner
Product

Power(mW)

Proposed

Coproc‐Type

IP‐Type
LISOLISO

LISO

STIO

LIO
STIO STIO STIO LIO

(b)

A%/B%: A% means power saving ratio compared with Coproc-Type
and B% means power saving ratio compared with IP-Type.

Fig. 19. Power comparison. (a) Real applications, (b) Benchmarks.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.11, NO.3, SEPTEMBER, 2011 219

VII. CONCLUSIONS

Coarse-grained reconfigurable architectures have
emerged as a suitable solution for embedded systems
because it aims to achieve high performance and
flexibility. However, the CGRA has been considered as
prohibitive one due to its significant area/power overhead
and performance bottleneck. In addition, fixed
communication structure between the computing block
and processor can not guarantee good performance for
various applications. To overcome the limitations, in this
paper, I proposed a new computing hierarchy consisting
of two reconfigurable computing blocks with two types
of communication structure together. In addition, the two
computing blocks have shared critical resources. Such a
sharing structure provides efficient communication
interface between them with reducing overall area.
Experiments with implementation of several applications
on the new hierarchical CGRA demonstrate the
effectiveness of my proposed approach. The proposed
approach reduces area by up to 22.68%, execution time
by up to 72.92% and power by up to 55.55.% when
compared with the existing undivided arrays in CGRA
architectures.

ACKNOWLEDGMENTS

This Research was supported by the Sookmyung
Women's University Research Grants 1-1103-0728.

REFERENCES

[1] Reiner Hartenstein, “A decade of reconfigurable
computing: a visionary retrospective,” in Proc. of
Design Automation and Test in Europe Conf.,
pp.642-649, Mar., 2001.

[2] Hartej Singh et al, “MorphoSys: an integrated
reconfigurable system for data-parallel and
computation-intensive applica-tions,” IEEE Trans.
on Computers, Vol.49, No.5, pp.465-481, May,
2000.

[3] A. Deledda et al, “Design of a HW/SW
communication infra-structure for a heterogeneous
reconfigurable processor,” in Proc. of Design,
Automation, and Test in Europe Conf., pp.1352-
1357, Mar., 2008.

[4] C. Arbelo et al, “Mapping Control-Intensive Video
Kernels onto a Coarse-Grain Reconfigurable
Architecture: the H.264/AVC deblock-ing filter,”
in Design Automation and Test in Europe Conf.,
pp.642-649, Mar., 2007.

[5] T. Miyamori and K. Olukotun, “A quantitative
analysis of reconfigurable coprocessors for
multimedia appli-cations,” in Proc. of IEEE Symp.
on FPGAs for Custom Computing Machines,
pp.15-17, Apr., 1998.

[6] Michalis D. Galanis et al, “Speedups in embed-ded
systems with a high-performance coprocessor
datapath,” ACM Transactions on Design Automation
of Electronic Systems, Vol.12, No.35, Aug., 2007.

[7] Timothy J. Callahan et al, “The Garp architecture
and C compiler,” IEEE Computer, Vol.33, No.4,
pp.62-69, Apr., 2000.

[8] A. S. Y. Poon, “An Energy-Efficient Reconfigurable
Baseband Processor for Wireless Communications,”
IEEE Trans. on Very Large Scale Integration
Systems, Vol.15, No.3, pp.319-327, Mar., 2007.

[9] Yoonjin Kim et al, “Resource sharing and pipelining
in coarse-grained reconfigurable architecture for
domain-specific optimization,” in Proc. of Design
Automation and Test in Europe Conf., pp.12-17,
Mar., 2005.

[10] Francisco Barat et al, “Low power coarse-grained
reconfigurable instruction set processor,” in Proc.
of Int. Conf. on Field Pro-grammable Logic and
Applications, pp.230-239, Sep., 2003.

[11] Marco Lanuzza et al, “Cost-effective low-power
processor-in-memory-based reconfig' datapath for
multimedia applications,” in Proc. of Int. Symp. on
Low Power Electronics and Design, pp.161-166,
Aug., 2005.

[12] Huesung Kim et al, “Low-power high-performance
reconfigurable computing cache architectures,” IEEE
Trans. on Computers, Vol.53, No.10, pp.1274-1290,
Oct., 2004.

[13] http://www.ert.de/Projekte/Tools/DSPSTONE
[14] http://www.netlib.org/benchmark/livermorec
[15] Gaisler Research; http://www.gaisler.com/cms
[16] Jong-eun Lee et al, “Mapping loops on coarse-

grained reconfigurable architectures using memory
operation sharing,” in Technical Report 02-34,
Center for Embedded Computer Sys-tems(CECS),
Univ. of California Irvine, Calif., 2002.

220 YOONJIN KIM et al : RECONFIGURABLE MULTI-ARRAY ARCHITECTURE FOR LOW- POWER AND ~

[17] Jonghee W. Yoon et al, “Temporal Mapping for
Loop Pipelining on a MIMD style Coarse-Grained
Reconfigurable Architecture,” in Proc. of
International SoC Design Conference, Oct., 2006.

Yoonjin Kim received the B.S. degree
in information and communication
engineering from Sungkyunkwan
University, Seoul, South Korea, in
2003, the M.S. degree in electrical
engineering and computer science
from Seoul National University,

Seoul, South Korea, in 2005, and the Ph.D. degree in
computer engineering from Texas A&M University,
College Station, in 2009. From 2009 to 2010, he was a
Senior R&D Staff Member with the Samsung Advanced
Institute of Technology (SAIT), Gyeonggi, South Korea.
Since 2010, he has been an Assistant Professor with the
Department of Computer Science at Sookmyung
Women’s University in Seoul, South Korea. His research
interests include embedded systems, computer architecture,
VLSI/system-on-chip design, and hardware/software co-
design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

