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Recently, the power consumption of integrated circuits 
has been attracting increasing attention. Many techniques 
have been studied to improve the power efficiency of 
digital signal processing units such as fast Fourier 
transform (FFT) processors, which are popularly 
employed in both traditional research fields, such as 
satellite communications, and thriving consumer 
electronics, such as wireless communications. This paper 
presents solutions based on parallel architectures for high 
throughput and power efficient FFT cores. Different 
combinations of hybrid low-power techniques are 
exploited to reduce power consumption, such as 
multiplierless units which replace the complex multipliers 
in FFTs, low-power commutators based on an advanced 
interconnection, and parallel-pipelined architectures. A 
number of FFT cores are implemented and evaluated for 
their power/area performance. The results show that up to 
38% and 55% power savings can be achieved by the 
proposed pipelined FFTs and parallel-pipelined FFTs 
respectively, compared to the conventional pipelined FFT 
processor architectures. 
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I. Introduction 

The FFT processor is widely used in mobile systems for 
image and signal processing applications. It is a main module 
of OFDM-based systems, such as the MC-CDMA receiver and 
WLAN chips. The requirement for low-power FFT 
architectures for telecommunication systems in portable form 
is becoming more and more important. Due to the 
characteristic of non-stop processing at sample rate, the 
pipelined FFT is the leading architecture for high throughput or 
low-power solutions [1]. In pipelined architectures, power 
consumption is dominated by the commutator and the complex 
multiplier at each stage.  

Researchers have proposed a number of low-power 
techniques for FFT processors. In [2], a cache-memory-based 
architecture was presented, which uses an algorithm that offers 
good data locality to increase speed and energy efficiency. In 
[3], the authors proposed a new radix-2/4/8 algorithm, which 
can effectively minimize the number of complex 
multiplications in pipelined FFTs. An ordering-based pipelined 
radix-4 FFT was presented in [4]. Coefficient ordering reduces 
the switching activity between successive coefficients fed to 
the complex multiplier, which leads to lower power 
consumption. The power of a pipelined FFT processor is 
dominated by the size of storage blocks. Therefore, the authors 
of [5] and [6] proposed progressive word length instead of 
fixed word length, using a shorter word length for stages in 
which the word length’s impact on size is significant and a 
longer word length for stages in which the word length’s 
impact on precision is significant. In [7], the authors proposed a     
low-power FFT architecture based on multirate signal 
processing and asynchronous circuit technology. The 
communication is localized, and the sharing of the global 
memory is eliminated. To reduce the number of operations in 
FFTs and thus reduce power consumption, some researchers 
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use shifters and adders to replace the complex multiplications 
by some special constant coefficients. The authors of [8] 
employ seven shift-and-add units to carry out seven 
multiplications in parallel, each by a constant coefficient. In [9] 
and [10], we proposed a multiplierless architecture based on 
common subexpression sharing, which replaces the complex 
multipliers in FFTs, and a low-power commutator architecture, 
which reduces the number of memory accesses. In addition to 
the pipelined FFT, the parallel-pipelined FFT is a good solution 
for applications requiring high throughput and high power 
efficiency. This paper implements a number of FFT IP cores 
based on both pipelined and parallel-pipelined architectures, 
through different combinations of hybrid low-power 
architectures. 

II. Pipelined FFTs and Parallel-Pipelined FFTs 

The discrete Fourier transform (DFT) of N complex data 
points, x(n), is defined by  
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where WN is the twiddle factor, (2 / )j N
NW e π−= . The FFT is a 

fast algorithm for computing DFT. In [11], the authors 
presented a radix-4 single-path delay commutator (R4SDC) 
pipelined FFT algorithm for word-sequential data. For radix r1, 
(1) can be rewritten as  
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The N-point DFT in (2) can be decomposed into v stages, 
where N = r1r2…rv , and the final stage is defined as  
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The intermediate stages (t) are given as in [11] by the 
following recursive equation:  
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where, for both (3) and (4), the following conditions apply: 
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Based on the preceding equations, the flow graph of a  
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Fig. 1. Signal flow graph of a radix-4 16-point FFT. 
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16-point FFT with r1= 4 can be seen in Fig. 1, where each open 
circle denotes a summation, while the dots define the stage 
borders. The number inside the open circle is the value of m1 
(for the first stage) or m2 (for the second stage). An N-point 
pipelined FFT processor based on the R4SDC architecture is 
shown in Fig. 2. It achieves 75% utilization of the complex 
multiplier and 100% utilization of the butterfly element [11], 
[12]. The parallel-pipelined architectures for 16-point and 64-
point FFTs are shown in Figs. 3 and 4, respectively. 

III. Low-Power Techniques 

In this paper, three low-power techniques are employed to 
reduce the power consumption in different FFT architectures. 
The first technique involves the use of a parallel-pipelined 
architecture at a lower frequency to meet the given throughput. 
The second technique replaces the complex multiplier with a 
minimum number of adders and shifters by using both two’s 
complement and canonical signed-digit (CSD) representations. 
The third technique proposes a low-power architecture of the 
commutator (IDR) with a minimal number of memory write 
operations. These techniques are described in more detail in the 
following sub-sections. 

1. Parallel-Pipelined Architectures 

The pipelined FFT is viewed as the leading architecture for 
real time applications. However, the use of only one processor 
element (PE) in each stage limits the throughput of pipelined 
FFTs. Therefore, an increased throughput requires further 
parallelization.  
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Fig. 2. N-point R4SDC pipelined FFT processor architecture. 
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Fig. 3. Block diagram of 16-point 2-parallel-pipelined FFT architecture. 
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This means more PEs need to be used to complete the 

computations required in each stage of the FFT. Parallel-
pipelined FFTs provide a suitable solution for both high 
throughput and high power efficiency applications. In parallel-
pipelined architectures, only the number of PEs is increased, 
and the sizes of FIFOs remain the same. Hence, the area 
overhead of the parallel-pipelined architectures is not 
significant. For a given throughput, parallel-pipelined FFTs can 
operate at lower frequencies than the pipelined FFTs, resulting 
in lower power consumption. In a 16-point 2-parallel-pipelined 
FFT, 2 PEs are allocated to each stage of the FFT, doubling the 
throughput. This architecture is shown in Fig. 3, where the 
input data is separated into two streams, namely X(2n) and 
X(2n + 1). Two commutators in stage 1, each having half of the 
storage units of the original commutator, provide the data to the 
butterfly units. The coefficients are divided into even 
(coefficient 1) and odd (coefficient 2) sections according to 
even and odd input data streams. These coefficients are then 
fed into the corresponding complex multipliers. Due to the 
separate processing for odd and even data, a shuffle unit is 
needed in stage 2 to implement the interstage data shuffle. The 
shuffle unit is composed of two triple port SRAMs (TM1 and 
TM2) and an addressing control unit. The four outputs from 
the two triple port SRAMs are then fed into the simplified 
butterfly units in stage 2. 

Similarly, in a 64-point 4-parallel-pipelined FFT, four PEs 
are allocated to each stage of the FFT, resulting in a 400% 
increase of the throughput rate. The input data is separated into 
four streams, namely, X(4n), X(4n +1), X(4n + 2), and X(4n + 

3). There are four commutators in both stage 1 and stage 2. 
Each of the commutators has 1/4 size of the commutators in 
corresponding stages of the R4SDC pipelined FFT. The 
coefficients in each stage are divided into four sections. 
Coefficients 1 to 4 correspond to the four input streams. Only 3 
complex multipliers are used in stage 2, since the coefficient set 
for the first butterfly consists of only (7fff, 0000), which can 
easily be implemented without a multiplier. In this architecture, 
since the number of PEs per stage is equal to four, no shuffle 
unit is needed. The outputs of the multiplier units in stage 2 are 
fed into each of the four simplified butterfly elements in stage 3, 
as shown in Fig. 4.  

2. Multiplierless Architecture 

In FFTs, the conventional complex multiplier consists of four 
real multipliers, one adder and one subtractor. However, since 
the complex coefficients for all stages can be pre-computed, we 
can use shift and add operations with common subexpression 
sharing for those stages that have few coefficients. In [9], we 
proposed a multiplierless architecture to substitute the complex 
multiplier. For example, the number of coefficients used in the 
second stage of a 64-point FFT or the first stage of a 16-point 
FFT is 16. These coefficients are shown in Table 1. A close 
observation of these coefficients reveals that seven of them are 
(7fff, 0000), and one of them is (0000, 8000). These are the 
quantized representations of (1, 0) and (0, -1) in a 16-bit 
fractional two’s complement format, respectively. In each set, 
the first entry corresponds to the cosine function (the real part,  
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Fig. 4. Block diagram of 64-point 4-parallel-pipelined FFT architecture. 
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Table 1. The coefficients for 16-point R4SDC FFT. 

Coefficient 
sequence  
m1=0,1 

Original  
quantized 
coefficient 

Coefficient 
sequence 
m1=2,3 

Original  
quantized 
coefficient 

W0 7fff, 0000 W0 7fff, 0000 

W0 7fff, 0000 W2 5a82, a57d 

W0 7fff, 0000 W4 0000, 8000 

W0 7fff, 0000 W6 a57d, a57d 

W0 7fff, 0000 W0 7fff, 0000 

W1 7641, cf04 W3 30fb, 89be 

W2 5a82, a57d W6 a57d, a57d 

W3 30fb, 89be W9 89be, 30fb 

 

 
Wr) and the second entry corresponds to the sine function (the 
imaginary part, Wi). For trivial coefficients, such as (7fff, 0000) 
and (0000, 8000), complex multiplication is unnecessary. For 
example, the data can directly pass through the multiplier unit 
without any multiplication, when it is multiplied with the 
coefficient set (7fff, 0000). Similarly, only an additional unit, 
which swaps the real and imaginary parts of the input data and 
inverts the imaginary part, is needed for that data which is 
multiplied by (0000, 8000). The rest of the coefficients are 
nontrivial coefficients. They are composed of only 6 constants 
(7641, 5a82, 30fb, a57d, 89be, and cf04). However, 89be, a57d, 
and cf04 are the one’s complements of 7641, 5a82, and 30fb, 

respectively. Hence, only multiplications with these constants 
(7641, 5a82, and 30fb) would be required to implement all 
multiplications with these nontrivial coefficients. For example, 
a multiplication with the constant a57d could be realized by 
first multiplying the data with 5a83, and then two’s 
complementing the result. Note that a multiplication by the 
constant 5a82 is already available. Therefore, the multiplication 
with the constant 5a83 can simply be obtained by adding the 
data to the already existing multiplication with 5a82. The other 
two constants (89be and cf04) can be realized in a similar 
manner, using constants 7641 and 30fb, respectively. The 
constant 5a82 is represented by two’s complement format, and 
7641 and 30fb are represented by CSD format as follows: 5a82 
(0101101010000010), 7641 (1000-10-1001000001), and 30fb 
(010-1000100000-10-1). The mixed use of CSD and two’s 
complement minimizes the number of addition/shift operations. 
We can use the shift-add based implementation of 
multiplications with the three constants to carry out those 
nontrivial complex multiplications. According to the previous 
representation, these multiplications with the three constants 
are given by: 
 
5a82X = X << 1 + X << 7 + X << 9 +X << 11 + X << 12 + X 

<< 14, 
7641X = X + X << 6 - X << 9 - X << 11 + X << 15, 
30fbX = -X - X << 2 + X << 8 - X << 12 + X << 14,     (6) 
 
where X represents the input data. In the previous equations,  
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Table 2. Operations required before common subexpression sharing.

Operation 5a82X 7641X 30fbX 

Addition 5 2 2 

Subtraction 0 2 3 

Shift 6 4 4 

Table 3. Operations required after common subexpression sharing.

Operation 5a82X 7641X 30fbX 

Addition 2 1 0 

Subtraction 0 1 2 

Shift 3 3 2 

 

the number of operations required for the computation of 
5a82X, 7641X, and 30fbX are shown in Table 2. In all 
nontrivial coefficient multiplications, the proportions of the 
multiplications referring to 5a82, 7641, and 30fb are 50%, 25%, 
and 25%, respectively. Hence, the average operations for a 
nontrivial coefficient multiplication are 4.5 additions, 2.5 
subtractions, and 7 shifts. 

However, if 5X = X + X << 2 and 65X = X + X << 6 are 
precomputed, (6) can be rewritten as  
 

5a82X = 5X << 12 + 5X << 9 + 65X << 1, 
7641X = X << 15 + 65X << - 5X << 9, 
30fbX = 65X << 8 - X << 12 - 5X.                  (7) 
 
The common subexpressions for the three constants are 101 

and 1000001. Pre-computation requires 2 additions and 2 shifts. 
In (7), the operations required for the computations of 5a82X, 
7641X, and 30fbX are shown in Table 3. The results of the pre-
computation can be used for both multiplications with the real 
part (Wr) and the imaginary part (Wi) of nontrivial coefficients.  

  

Therefore, after the common subexpression sharing, the 
average operations for a nontrivial coefficient multiplication are 
3.5 additions, 1.5 subtractions, and 6 shifts, including the 
operations in pre-computation. Therefore, the operation saving 
of additions/subtractions is 28.8%, and that of shift is 14.3%. 

Figure 5 shows the shift-and-add module for the three 
constants in a 16-point FFT. The module carries out the 
multiplications in which the real part (Xr) or the imaginary part 
(Xi) of input data is multiplied by Wr and Wi , respectively. The 
shift-and-add module is equipped with five single-bit control 
signals, s1–s5. First, the input data is fed into the common 
subexpression block. The signal s1 indicates which constant 
channels will be chosen for processing the input data. Each 
channel carries out shift, negation, and addition operations for a 
given constant. The control signal s3 indicates that the constant 
7641 block outputs the product either by 7641 or 7642. 
Similarly, the signals s2 and s4 control the outputs of constant 
5a82 and 30fb blocks respectively. The controllable invert units 
following the constant units either invert the outputs of the 
constant units or pass them unchanged. The swap unit provides 
the appropriate swapping for input data, depending on whether 
the coefficient is (30fb, 7641) or (7641, 30fb). The output 
switch unit selects the final outputs. Only 11 adders are used in 
the shift-and-add module. 

Based on the above discussion, the complex multiplication 
unit in a 16-point radix-4 pipelined FFT can be substituted by a 
multiplierless unit. The block diagram of the unit is depicted in 
Fig. 6. Only data that has to be multiplied with nontrivial 
complex coefficients is fed into the shift-and-add units. Two 
shift-and-add units are needed for both the real part (Xr) and the 
imaginary part (Xi). There are two single-bit control signals, s6 
and s7, in the multiplierless unit. Signal s6 indicates whether the 
input data corresponds to a nontrivial complex coefficient. 
When signal s7 is asserted to logic 1 state, the real and 
imaginary parts of the input data are swapped, and the 
imaginary part is inverted. Otherwise, the swap unit passes the  

 
 

Fig. 5. Block diagram of the shift-and-add module in multiplierless unit of the 16-point R4SDC FFT. 
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Fig. 6. Block diagram of the multiplierless unit in the 16-point 
R4SDC FFT. 
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Fig. 7. IDR commutator architecture based on dual port RAMs
for R4SDC. 
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input data unchanged. Here, in the multiplierless unit, 22 
adders are used to substitute the four real multipliers in the 
complex multiplier unit. Due to the use of the multiplierless 
unit, the ROM unit storing the coefficients is replaced by an 
FSM unit for generating the control signals (s1–s7). The 
multiplierless approach can also be used for 16-point 2-
parallel-pipelined FFTs and 64-point 4-parallel-pipelined FFTs. 
Similar multiplierless architectures such as the one shown in 
Fig. 6 are employed in place of complex multipliers in those 
FFTs.  

3. IDR Commutator 

The commutator unit is one of the main power-consuming 
components in the R4SDC FFT. Previous approaches to 
implementing commutators include shift register (SR) 
architecture [11], conventional dual-port RAM (DR) 
architecture [11], and triple-port RAM (TR) architecture [13]. 
These architectures are based on the same interconnection 
topology among different FIFO elements [13]. In [10], we  

Table 4. RAMs selected in different periods. 

mt 0 1 2 3 

RAMs 
selected 

DM1 
DM3 

DM0, 
DM2, 
DM4 

DM1, 
DM3, 
DM5 

DM0 
DM2 

 

proposed a new architecture based on dual-port RAMs, termed 
as IDR. IDR exploits a new interconnection topology among 
dual-port RAM blocks. Figure 7 shows a block diagram of 
IDR. IDR efficiently reduces the switching activity by 
maintaining the unused outputs of RAMs at their previous 
values. It also reduces the number of write operations to 
memory blocks. Table 4 shows which RAMs are enabled for 
write operation during each period. For example, for stage t, 
when mt is equal to 1, new Nt-1 input data is processed. The 
first Nt data is written into DM0. The previous Nt values stored 
in DM0 will be read out and written into DM2 to free space for 
the new ones. The same applies to DM2 and DM4.  

The other three RAMs are disabled for write operation 
during this period. For mt = 0 and 3, the number of RAMs 
enabled is two, because the previous values stored in DM2 and 
DM3 are no longer needed for subsequent outputs. Therefore, 
with IDR architecture, each RAM block is enabled an average 
of 5/3 times during the four periods, whereas for DR and TR, 
each RAM block is enabled 4 and 10/3 times, respectively [13]. 
Hence, our architecture is significantly more power efficient 
than both DR and TR.  

4. Low-Power Butterfly 

In the R4SDC FFT, the butterfly element performs the 
summations of (2). The conventional butterfly architecture 
consists of 6 adders/subtractors. In [14], a low-power butterfly 
architecture was presented. Two 4-input summation blocks 
were employed to replace six adder/subtractors. However, 
since the inversions were implemented based on one’s 
complement (and not two’s complement), the architecture 
introduced a small error in the butterfly operations. In this paper, 
we improve the architecture by eliminating this error. Figure 8 
shows the improved low-power butterfly architecture. Six 
inverters (Con1 to Con6) are used to generate the normal form 
or the one’s complement form under the control of C5, C6, and 
C7. Signal C4 controls the four multiplexers (Mux1 to Mux4) to 
direct appropriate data to the inputs of the summation blocks. 
Two 5-input summation blocks (SUM0 and SUM1) are 
employed to generate the real and imaginary parts of the output 
respectively. An additional decoder unit is used to eliminate the 
error caused by the one’s-complement-based inversion.  
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Fig. 8. Block diagram of improved low-power butterfly
architecture. 

XOr

 Decoder 
COM 

COMI 

Con1 

Con2 

Con3 

Con4 

Con5 

Con6 

Mux3 

Mux4 

Xr0 
C7 

Xr1 
C5 

Xi1 
C5 

Xi2 
C7 

Xr3 
C6 

Xi3 
C6 

Xmr0 

Xmr1 

Xmi1 

Xmi2 

Xmr3 

Xmi3 

Xi0 

Xmr0

Xmi2

Xr2 

C4 
Xmi1 

Xmi3 
COM 

Xmr0

Xi0 

Xr2 
Xmi2

Xmr1 

Xmr3 

COMI 

SUM0

SUM1 XOi

C6 

C5 

C4 

C4 

C4 

C4 

 

IV. Results 

A total of five different architectures (namely, the 
conventional scheme and schemes I to IV) were implemented 
for 64-point and 16-point R4SDC pipelined FFTs. The 
conventional FFT and schemes I to III were implemented for 
32-point FFTs. Pipelined architectures were used in the 
conventional approach and in schemes I to III for three FFTs of 
different sizes. Parallel-pipelined architectures were employed 
in scheme IV. The input data used was 32 bits long. The 64-
point pipelined FFTs were synthesized at 16 ns clock cycles. 
The 32-point and 16-point pipelined FFTs were synthesized at 
12 ns clock cycles. Power evaluations were carried out, at 20 ns 
for the 64-point FFTs and at 14 ns for the 32-point and 16-point 
FFTs. For the parallel pipelined FFTs, the 16-point 2-parallel-
pipelined FFT was synthesized at 24 ns clock cycles and power 
evaluated at 28 ns clock cycles. The 64-point 4-parallel-
pipelined FFT was synthesized at 60 ns clock cycles and power 
evaluated at 80 ns clock cycles. All designs were synthesized 
by the Synopsys DesignCompiler targeting the UMC 0.18 μ 
CMOS technology library, and power was evaluated by 
Synopsys DesignPower. Tables 5 to 7 provide information 
about the main modules for each implementation. According to 
the R4SDC pipelined architecture, for 32-point and 64-point 
FFTs, there are three stages, each containing one butterfly 
module and one commutator module. Multiplier 1 and 
multipiler 2 represent the multiplier units used after 
commutator 1 and commutator 2, respectively. There are only 
two stages and one multiplier unit for 16-point FFTs. For all  

Table 5. Implementation schemes for 16-point FFT. 

Main    
modules Conv. I II III IV 

Butterfly 1 add-sub sum sum sum 2X sum 

Butterfly 2 add-sub sum sum sum 2X simplified

Commutator 1 DR DR IDR IDR SR 

Commutator 2 SR SR SR SR shuffle (TM)

Multiplier NBW NBW NBW mless 2X mless 

Table 6. Implementation schemes for the 32-point FFT. 

Main modules Conv. I II III 

Butterfly 1 add-sub sum sum sum 

Butterfly 2 add-sub sum sum sum 

Butterfly 3 add-sub add-sub add-sub add-sub 

Commutator 1 DR DR IDR IDR 

Commutator 2 DR SR SR SR 

Commutator 3 SR SR SR SR 

Multiplier 1 NBW NBW NBW NBW 

Multiplier 2 NBW NBW NBW mless 

Table 7. Implementation schemes for the 64-point FFT. 

Main modules Conv. I II III IV 

Butterfly 1 add-sub sum sum sum 4X sum 

Butterfly 2 add-sub sum sum sum 4X sum 

Butterfly 3 add-sub sum sum sum 4X simplified 

Commutator 1 DR DR IDR IDR IDR 

Commutator 2 DR DR IDR IDR SR 

Commutator 3 SR SR SR SR NA 

Multiplier 1 NBW NBW NBW NBW mless, 3X NBW

Multiplier 2 NBW NBW NBW mless 3X mless 

 

different size FFTs, in the conventional approach, the butterfly 
modules in all stages are based on the conventional 
adder/subtractor architecture (add-sub). The commutator in the 
final stage is based on an SR, whereas the commutators in 
other stages are based on DRs. The multipliers are based on a 
non-Booth coded Wallace tree (NBW) architecture. The only 
difference between the conventional approach and scheme I is 
that the add-subs were replaced with a low-power butterfly 
architecture (sum) as described in section III.4, except the third 
stage of the 32-point FFT, where radix-2 butterflies were used. 
Scheme II differs from scheme I, as the IDR architecture was 
employed in stage 1 of all FFTs and stage 2 of the 64-point 
FFT. Scheme III is a modified version of scheme II, where a  
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Table 8. Power consumption analysis for 16-point R4SDC FFT. 

Power consumption (mW)  
 

Conv. I II III IV 

Butterfly 1 9.53 4.62 4.70 4.52 3.70 

Butterfly 2 8.45 4.54 4.54 4.55 2.99 

Commutator 1 18.70 18.3 12.71 12.48 10.13 

Commutator 2 6.53 6.54 6.56 6.55 2.83 

Multiplier 15.27 15.27 15.27 8.06 8.55 

Total 63.24 54.07 48.63 39.41 30.20 

Table 9. Power consumption analysis for 32-point R4SDC FFT. 

Power consumption (mW) 
 

Conv. I II III 

Butterfly 1 10.66 5.61 4.87 4.62 

Butterfly 2 6.423 3.54 3.54 3.53 

Butterfly 3 2.365 2.37 2.37 2.36 

Commutator 1 26.57 27.13 18.99 18.26 

Commutator 2 10.52 10.55 10.54 10.54 

Commutator 3 1.381 1.38 1.38 1.37 

Multiplier 1 14.99 14.99 14.99 13.68 

Multiplier 2 15.08 15.08 15.08 3.07 

Total 98.18 90.81 82.17 65.34 

Table 10. Power consumption analysis for 64-point R4SDC FFT.

Power consumption (mW) 
 

Conv. I II III IV 

Butterfly 1 2.80 1.55 3.05 1.45 3.56 

Butterfly 2 2.82 1.58 3.46 2.97 3.24 

Butterfly 3 5.31 3.11 2.93 2.93 1.11 

Commutator 1 27.11 27.13 23.23 22.64 9.65 

Commutator 2 13.22 13.24 8.95 8.46 3.43 

Commutator 3 3.87 3.84 3.76 3.70 NA 

Multiplier 1 9.45 9.45 9.45 8.86 10.07 

Multiplier 2 9.87 9.87 9.87 4.98 5.29 

Total 84.81 80.11 74.64 64.80 40.59 

 

multiplierless approach (mless) was used for the multiplier unit 
in the final stage, as discussed in section III.2. For scheme IV 
of the 16-point FFT, the parallel-pipelined architecture was 
employed, where two sum-based butterfly modules were used 
in stage 1 and two simplified butterfly modules were used in 
stage 2. Commutator 1 was based on SR, commutator 2 utilized 
a triple-port SRAM-based shuffle, and two multiplierless units  

 

Fig. 9. Power reduction of schemes I to IV relative to 
conventional FFT. 
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Fig. 10. Area comparison. 
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were utilized to replace complex multipliers. For scheme IV of 
the 64-point FFT, IDR and SR were used for commutator 1 
and commutator 2. Three multiplierless units were applied in 
stage 2, while one multiplierless unit and three NBW-based 
complex multipliers were applied in stage 1.  

The comparative power and area results are shown in Figs. 9 
and 10, respectively. Clearly, for 16-point FFTs, the best power 
saving of 52% is achieved with scheme IV, followed by 38%, 
23%, and 15% savings with schemes III, II, and I, respectively. 
The power profiles for 64-point and 32-point FFTs remain the 
same, achieving 52%, 24%, 12%, and 6% power reduction for 
64-point FFTs from scheme IV to scheme I, and 34%, 16%, 
and 8% for 32-point FFTs from scheme III to scheme I 
respectively. Tables 8 to 10 show the power consumption of the 
main modules for each implementation. For most pipeline-based 
FFTs, the low-power butterfly consumes only about half the 
power of the conventional add-sub-based butterfly architecture. 
However, in schemes II and III of the 64-point FFT, sum-based 
butterflies in some stages consume more power than 
conventional butterflies. This is due to the increased switching 
activity caused by IDR architectures, on the input data of 
butterfly modules. However, IDR has less influence on both 16-
point and 32-point FFTs. For all sizes of FFTs, the multiplierless 
units achieve power savings of about 50% or more than the 
complex multiplier based on the non-Booth coded Wallace tree. 
For commutators, IDR architectures perform better in stage 2 
(32% power saving) than stage 1 (15% power saving) of 64-
point FFTs, as compared to DR architecture. For pipelined FFTs, 
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the proposed techniques bring an area reduction to some extent. 
From all of the results, it is obvious that parallel-pipelined 
architectures can achieve the best power savings with the area 
penalty to some extent. For  16-point FFTs, the parallel-
pipelined architecture only has 7% area overhead. However, for 
64-point FFTs, the area penalty of the parallel-pipelined 
architecture is 47%. Hence, scheme III has the best trade off 
between power saving and area increase for various sizes of 
FFTs. 

V. Conclusion 

In this paper, a number of high-performance FFT cores 
based on combinations of hybrid low-power techniques were 
presented. These low-power techniques are parallel-pipelined 
architectures, the multiplierless architecture, IDR commutator 
architecture, and the low-power butterfly architecture. The 
impact of parameterization on power/area performance has 
been studied. Based on the combination of the proposed low- 
power techniques, up to 52% power saving is achieved. 
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