
ETRI Journal, Volume 30, Number 3, June 2008 Wei Han et al. 451

Recently, the power consumption of integrated circuits
has been attracting increasing attention. Many techniques
have been studied to improve the power efficiency of
digital signal processing units such as fast Fourier
transform (FFT) processors, which are popularly
employed in both traditional research fields, such as
satellite communications, and thriving consumer
electronics, such as wireless communications. This paper
presents solutions based on parallel architectures for high
throughput and power efficient FFT cores. Different
combinations of hybrid low-power techniques are
exploited to reduce power consumption, such as
multiplierless units which replace the complex multipliers
in FFTs, low-power commutators based on an advanced
interconnection, and parallel-pipelined architectures. A
number of FFT cores are implemented and evaluated for
their power/area performance. The results show that up to
38% and 55% power savings can be achieved by the
proposed pipelined FFTs and parallel-pipelined FFTs
respectively, compared to the conventional pipelined FFT
processor architectures.

Keywords: Low power, FFT, multiplierless architecture,
parallel FFT architecture, pipelined FFT architecture,
energy efficient.

Manuscript received June 25, 2007; revised Feb. 16, 2008.
Wei Han (phone: + 44 (0) 131 6505592, email: w.han@ed.ac.uk), Ahmet T. Erdogan (email:

Ahmet.Erdogan@ee.ed.ac.uk), and Tughrul Arslan (email: T.Arslan@ed.ac.uk) are with the
School of Engineering and Electronics, University of Edinburgh, Edinburgh, UK.

Mohd. Hasan (phone: + 0091 571 2721148, email: m_hasan786@rediffmail.com) is with
the Department of Electronics Engineering, AMU, Aligarh, India

I. Introduction

The FFT processor is widely used in mobile systems for
image and signal processing applications. It is a main module
of OFDM-based systems, such as the MC-CDMA receiver and
WLAN chips. The requirement for low-power FFT
architectures for telecommunication systems in portable form
is becoming more and more important. Due to the
characteristic of non-stop processing at sample rate, the
pipelined FFT is the leading architecture for high throughput or
low-power solutions [1]. In pipelined architectures, power
consumption is dominated by the commutator and the complex
multiplier at each stage.

Researchers have proposed a number of low-power
techniques for FFT processors. In [2], a cache-memory-based
architecture was presented, which uses an algorithm that offers
good data locality to increase speed and energy efficiency. In
[3], the authors proposed a new radix-2/4/8 algorithm, which
can effectively minimize the number of complex
multiplications in pipelined FFTs. An ordering-based pipelined
radix-4 FFT was presented in [4]. Coefficient ordering reduces
the switching activity between successive coefficients fed to
the complex multiplier, which leads to lower power
consumption. The power of a pipelined FFT processor is
dominated by the size of storage blocks. Therefore, the authors
of [5] and [6] proposed progressive word length instead of
fixed word length, using a shorter word length for stages in
which the word length’s impact on size is significant and a
longer word length for stages in which the word length’s
impact on precision is significant. In [7], the authors proposed a
low-power FFT architecture based on multirate signal
processing and asynchronous circuit technology. The
communication is localized, and the sharing of the global
memory is eliminated. To reduce the number of operations in
FFTs and thus reduce power consumption, some researchers

High-Performance Low-Power FFT Cores

Wei Han, Ahmet T. Erdogan, Tughrul Arslan, and Mohd. Hasan

452 Wei Han et al. ETRI Journal, Volume 30, Number 3, June 2008

use shifters and adders to replace the complex multiplications
by some special constant coefficients. The authors of [8]
employ seven shift-and-add units to carry out seven
multiplications in parallel, each by a constant coefficient. In [9]
and [10], we proposed a multiplierless architecture based on
common subexpression sharing, which replaces the complex
multipliers in FFTs, and a low-power commutator architecture,
which reduces the number of memory accesses. In addition to
the pipelined FFT, the parallel-pipelined FFT is a good solution
for applications requiring high throughput and high power
efficiency. This paper implements a number of FFT IP cores
based on both pipelined and parallel-pipelined architectures,
through different combinations of hybrid low-power
architectures.

II. Pipelined FFTs and Parallel-Pipelined FFTs

The discrete Fourier transform (DFT) of N complex data
points, x(n), is defined by

1

0
() () ,

N
nk
N

n
X k x n W

−

=
= ∑ k = 0, 1,… N-1, (1)

where WN is the twiddle factor, (2 /)j N
NW e π−= . The FFT is a

fast algorithm for computing DFT. In [11], the authors
presented a radix-4 single-path delay commutator (R4SDC)
pipelined FFT algorithm for word-sequential data. For radix r1,
(1) can be rewritten as

1 1
1

1
1

1

1 1
0 0

1
() () .k pk

N
p

N rqX k W x N p q Wr
q

−

= =

−
= +∑ ∑ (2)

The N-point DFT in (2) can be decomposed into v stages,
where N = r1r2…rv , and the final stage is defined as

1 2 1 1 2 2 1 1 2 1
1

1
1 1 1

1 0

()

(,) .
v

v v

v
v

v v v v
r

q m
v v v r

q

X r r r m r r r m r m m

x q m W

− − −
−

−
− − −

− =

+ + + +

= ∑
 (3)

The intermediate stages (t) are given as in [11] by the
following recursive equation:

1

1

1 1
0

(,) (,)
t

t t t

t t

r
q m pm

t t t t t t tN r
p

x q m W x N p q m W
−

−

− −
=

= +∑ , (4)

where, for both (3) and (4), the following conditions apply:

1 20 1, 2 , and /()
2 1, 0 1.

i i t v

i i

q N i v N N r r r
t v m r

≤ ≤ − ≤ ≤ =

≤ ≤ − ≤ ≤ −
 (5)

Based on the preceding equations, the flow graph of a

6

9

15

Fig. 1. Signal flow graph of a radix-4 16-point FFT.

11
7

3

14

10

2

13

5

1

12

8

4
0

0
0
0
0

0
1
2
3

0
2
4

6
0

3
6
9

15 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0
0
0
0

1
1
1
1

2

2
2
2
3
3
3

3

0

1

2

3

0
1

2

3

0
1

2

3

0
1

2

16-point FFT with r1= 4 can be seen in Fig. 1, where each open
circle denotes a summation, while the dots define the stage
borders. The number inside the open circle is the value of m1
(for the first stage) or m2 (for the second stage). An N-point
pipelined FFT processor based on the R4SDC architecture is
shown in Fig. 2. It achieves 75% utilization of the complex
multiplier and 100% utilization of the butterfly element [11],
[12]. The parallel-pipelined architectures for 16-point and 64-
point FFTs are shown in Figs. 3 and 4, respectively.

III. Low-Power Techniques

In this paper, three low-power techniques are employed to
reduce the power consumption in different FFT architectures.
The first technique involves the use of a parallel-pipelined
architecture at a lower frequency to meet the given throughput.
The second technique replaces the complex multiplier with a
minimum number of adders and shifters by using both two’s
complement and canonical signed-digit (CSD) representations.
The third technique proposes a low-power architecture of the
commutator (IDR) with a minimal number of memory write
operations. These techniques are described in more detail in the
following sub-sections.

1. Parallel-Pipelined Architectures

The pipelined FFT is viewed as the leading architecture for
real time applications. However, the use of only one processor
element (PE) in each stage limits the throughput of pipelined
FFTs. Therefore, an increased throughput requires further
parallelization.

ETRI Journal, Volume 30, Number 3, June 2008 Wei Han et al. 453

 Commutator Butterfly Commutator Butterfly Commutator Butterfly

Fig. 2. N-point R4SDC pipelined FFT processor architecture.

Input
data D D D D Output

data

Stage 1 Stage v-1 Stage v

Fig. 3. Block diagram of 16-point 2-parallel-pipelined FFT architecture.

Commutator
1

Commutator
2

X(2n)

X(2n+1)

Butterfly 1
stage 1

Multiplier
unit 1

Butterfly 2
stage 1

Multiplier
unit 2

Shuffle

Butterfly 1
stage 2

Butterfly 2
stage 2

Y1

Y2

TM1
(4 words)

TM2
(4 words)

Control

Coefficient 1

Coefficient 2

This means more PEs need to be used to complete the

computations required in each stage of the FFT. Parallel-
pipelined FFTs provide a suitable solution for both high
throughput and high power efficiency applications. In parallel-
pipelined architectures, only the number of PEs is increased,
and the sizes of FIFOs remain the same. Hence, the area
overhead of the parallel-pipelined architectures is not
significant. For a given throughput, parallel-pipelined FFTs can
operate at lower frequencies than the pipelined FFTs, resulting
in lower power consumption. In a 16-point 2-parallel-pipelined
FFT, 2 PEs are allocated to each stage of the FFT, doubling the
throughput. This architecture is shown in Fig. 3, where the
input data is separated into two streams, namely X(2n) and
X(2n + 1). Two commutators in stage 1, each having half of the
storage units of the original commutator, provide the data to the
butterfly units. The coefficients are divided into even
(coefficient 1) and odd (coefficient 2) sections according to
even and odd input data streams. These coefficients are then
fed into the corresponding complex multipliers. Due to the
separate processing for odd and even data, a shuffle unit is
needed in stage 2 to implement the interstage data shuffle. The
shuffle unit is composed of two triple port SRAMs (TM1 and
TM2) and an addressing control unit. The four outputs from
the two triple port SRAMs are then fed into the simplified
butterfly units in stage 2.

Similarly, in a 64-point 4-parallel-pipelined FFT, four PEs
are allocated to each stage of the FFT, resulting in a 400%
increase of the throughput rate. The input data is separated into
four streams, namely, X(4n), X(4n +1), X(4n + 2), and X(4n +

3). There are four commutators in both stage 1 and stage 2.
Each of the commutators has 1/4 size of the commutators in
corresponding stages of the R4SDC pipelined FFT. The
coefficients in each stage are divided into four sections.
Coefficients 1 to 4 correspond to the four input streams. Only 3
complex multipliers are used in stage 2, since the coefficient set
for the first butterfly consists of only (7fff, 0000), which can
easily be implemented without a multiplier. In this architecture,
since the number of PEs per stage is equal to four, no shuffle
unit is needed. The outputs of the multiplier units in stage 2 are
fed into each of the four simplified butterfly elements in stage 3,
as shown in Fig. 4.

2. Multiplierless Architecture

In FFTs, the conventional complex multiplier consists of four
real multipliers, one adder and one subtractor. However, since
the complex coefficients for all stages can be pre-computed, we
can use shift and add operations with common subexpression
sharing for those stages that have few coefficients. In [9], we
proposed a multiplierless architecture to substitute the complex
multiplier. For example, the number of coefficients used in the
second stage of a 64-point FFT or the first stage of a 16-point
FFT is 16. These coefficients are shown in Table 1. A close
observation of these coefficients reveals that seven of them are
(7fff, 0000), and one of them is (0000, 8000). These are the
quantized representations of (1, 0) and (0, -1) in a 16-bit
fractional two’s complement format, respectively. In each set,
the first entry corresponds to the cosine function (the real part,

454 Wei Han et al. ETRI Journal, Volume 30, Number 3, June 2008

Fig. 4. Block diagram of 64-point 4-parallel-pipelined FFT architecture.

X(4n)

X(4n+1)

Multiplier unit 1
stage 1

Butterfly 1
stage 2

Butterfly 2
stage 2

Y1

Y2

m3=0

X(4n+2)

X(4n+3)

Butterfly 3
stage 1

Butterfly 4
stage 1

Butterfly 3
stage 2

Butterfly 4
stage 2

Butterfly 1
stage 3

m3=1

m3=2

m3=3

Y3

Y4

Multiplier unit 1
stage 2

Multiplier unit 2
stage 2

Coefficient 1

Coefficient 2

Coefficient 3

Coefficient 4

Coefficient 2

Coefficient 3

Coefficient 4

Butterfly 1
stage 1

Butterfly 2
stage 1

Multiplier unit 2
stage 1

Multiplier unit 3
stage 1

Multiplier unit 4
stage 1

Multiplier unit 3
stage 2

Butterfly 2
stage 3

Butterfly 3
stage 3

Butterfly 4
stage 3

Commutator
1

stage 1

Commutator
2

stage 1

Commutator
3

stage 1

Commutator
4

stage 1

Commutator
1

stage 2

Commutator
2

stage 2

Commutator
3

stage 2

Commutator
4

stage 2

Table 1. The coefficients for 16-point R4SDC FFT.

Coefficient
sequence
m1=0,1

Original
quantized
coefficient

Coefficient
sequence
m1=2,3

Original
quantized
coefficient

W0 7fff, 0000 W0 7fff, 0000

W0 7fff, 0000 W2 5a82, a57d

W0 7fff, 0000 W4 0000, 8000

W0 7fff, 0000 W6 a57d, a57d

W0 7fff, 0000 W0 7fff, 0000

W1 7641, cf04 W3 30fb, 89be

W2 5a82, a57d W6 a57d, a57d

W3 30fb, 89be W9 89be, 30fb

Wr) and the second entry corresponds to the sine function (the
imaginary part, Wi). For trivial coefficients, such as (7fff, 0000)
and (0000, 8000), complex multiplication is unnecessary. For
example, the data can directly pass through the multiplier unit
without any multiplication, when it is multiplied with the
coefficient set (7fff, 0000). Similarly, only an additional unit,
which swaps the real and imaginary parts of the input data and
inverts the imaginary part, is needed for that data which is
multiplied by (0000, 8000). The rest of the coefficients are
nontrivial coefficients. They are composed of only 6 constants
(7641, 5a82, 30fb, a57d, 89be, and cf04). However, 89be, a57d,
and cf04 are the one’s complements of 7641, 5a82, and 30fb,

respectively. Hence, only multiplications with these constants
(7641, 5a82, and 30fb) would be required to implement all
multiplications with these nontrivial coefficients. For example,
a multiplication with the constant a57d could be realized by
first multiplying the data with 5a83, and then two’s
complementing the result. Note that a multiplication by the
constant 5a82 is already available. Therefore, the multiplication
with the constant 5a83 can simply be obtained by adding the
data to the already existing multiplication with 5a82. The other
two constants (89be and cf04) can be realized in a similar
manner, using constants 7641 and 30fb, respectively. The
constant 5a82 is represented by two’s complement format, and
7641 and 30fb are represented by CSD format as follows: 5a82
(0101101010000010), 7641 (1000-10-1001000001), and 30fb
(010-1000100000-10-1). The mixed use of CSD and two’s
complement minimizes the number of addition/shift operations.
We can use the shift-add based implementation of
multiplications with the three constants to carry out those
nontrivial complex multiplications. According to the previous
representation, these multiplications with the three constants
are given by:

5a82X = X << 1 + X << 7 + X << 9 +X << 11 + X << 12 + X

<< 14,
7641X = X + X << 6 - X << 9 - X << 11 + X << 15,
30fbX = -X - X << 2 + X << 8 - X << 12 + X << 14, (6)

where X represents the input data. In the previous equations,

ETRI Journal, Volume 30, Number 3, June 2008 Wei Han et al. 455

Table 2. Operations required before common subexpression sharing.

Operation 5a82X 7641X 30fbX

Addition 5 2 2

Subtraction 0 2 3

Shift 6 4 4

Table 3. Operations required after common subexpression sharing.

Operation 5a82X 7641X 30fbX

Addition 2 1 0

Subtraction 0 1 2

Shift 3 3 2

the number of operations required for the computation of
5a82X, 7641X, and 30fbX are shown in Table 2. In all
nontrivial coefficient multiplications, the proportions of the
multiplications referring to 5a82, 7641, and 30fb are 50%, 25%,
and 25%, respectively. Hence, the average operations for a
nontrivial coefficient multiplication are 4.5 additions, 2.5
subtractions, and 7 shifts.

However, if 5X = X + X << 2 and 65X = X + X << 6 are
precomputed, (6) can be rewritten as

5a82X = 5X << 12 + 5X << 9 + 65X << 1,
7641X = X << 15 + 65X << - 5X << 9,
30fbX = 65X << 8 - X << 12 - 5X. (7)

The common subexpressions for the three constants are 101

and 1000001. Pre-computation requires 2 additions and 2 shifts.
In (7), the operations required for the computations of 5a82X,
7641X, and 30fbX are shown in Table 3. The results of the pre-
computation can be used for both multiplications with the real
part (Wr) and the imaginary part (Wi) of nontrivial coefficients.

Therefore, after the common subexpression sharing, the
average operations for a nontrivial coefficient multiplication are
3.5 additions, 1.5 subtractions, and 6 shifts, including the
operations in pre-computation. Therefore, the operation saving
of additions/subtractions is 28.8%, and that of shift is 14.3%.

Figure 5 shows the shift-and-add module for the three
constants in a 16-point FFT. The module carries out the
multiplications in which the real part (Xr) or the imaginary part
(Xi) of input data is multiplied by Wr and Wi , respectively. The
shift-and-add module is equipped with five single-bit control
signals, s1–s5. First, the input data is fed into the common
subexpression block. The signal s1 indicates which constant
channels will be chosen for processing the input data. Each
channel carries out shift, negation, and addition operations for a
given constant. The control signal s3 indicates that the constant
7641 block outputs the product either by 7641 or 7642.
Similarly, the signals s2 and s4 control the outputs of constant
5a82 and 30fb blocks respectively. The controllable invert units
following the constant units either invert the outputs of the
constant units or pass them unchanged. The swap unit provides
the appropriate swapping for input data, depending on whether
the coefficient is (30fb, 7641) or (7641, 30fb). The output
switch unit selects the final outputs. Only 11 adders are used in
the shift-and-add module.

Based on the above discussion, the complex multiplication
unit in a 16-point radix-4 pipelined FFT can be substituted by a
multiplierless unit. The block diagram of the unit is depicted in
Fig. 6. Only data that has to be multiplied with nontrivial
complex coefficients is fed into the shift-and-add units. Two
shift-and-add units are needed for both the real part (Xr) and the
imaginary part (Xi). There are two single-bit control signals, s6
and s7, in the multiplierless unit. Signal s6 indicates whether the
input data corresponds to a nontrivial complex coefficient.
When signal s7 is asserted to logic 1 state, the real and
imaginary parts of the input data are swapped, and the
imaginary part is inverted. Otherwise, the swap unit passes the

Fig. 5. Block diagram of the shift-and-add module in multiplierless unit of the 16-point R4SDC FFT.

>>2

In >>6

Constant
5a82

Constant
30fb

Constant
7641

Inverter

Inverter

Inverter
In

In

In

Swap

Mux × wr

× wi

Data signal
Control signal

s1
s1

s2

s2

s3

s4

s3

s4
s5

Common subexpression block

Output
switch

unit

Input
switch

unit

+

+

456 Wei Han et al. ETRI Journal, Volume 30, Number 3, June 2008

Fig. 6. Block diagram of the multiplierless unit in the 16-point
R4SDC FFT.

Swap

Shift-and-
add

Shift-and-
add

s6

Input data

Xr

Xi s6

s7
Output

× Wr
× Wi

× Wr
× Wi

Yr

Yi Data signal
Control signal

D
EM

U
X

M
U

X

-

+

Fig. 7. IDR commutator architecture based on dual port RAMs
for R4SDC.

Input

radrra

count[Nt-1:0]

in
rad
wad

DM 0

cs

A
count[2:0]

count[Nt-1:0]

radrre

count[Nt-1:0]

in
rad

wad

DM 2

cs

in
rad

wad

DM 4

cs

C E

radrrb

count[Nt-1:0]

in
rad
wad

DM 1

cs

B D F
radrrd

count[Nt-1:0]

in

rad

wad

DM 3

cs

radrrf

count[Nt-1:0]

in

rad

wad

DM 5

cs

Counter

ROM

count

m(6:0)
radrra
radrrb
radrrd
radrre

c4,c5,c6
cs(0-5)

radrrf

C
D

In
C
D

A
B
E
F

A
B
E

Mux
2-1

Mux
3-1

Mux
4-1

Mux
3-1

01

02

03

04

m[0]

m[1:2]

m[3:4]

m[5:6] Control

input data unchanged. Here, in the multiplierless unit, 22
adders are used to substitute the four real multipliers in the
complex multiplier unit. Due to the use of the multiplierless
unit, the ROM unit storing the coefficients is replaced by an
FSM unit for generating the control signals (s1–s7). The
multiplierless approach can also be used for 16-point 2-
parallel-pipelined FFTs and 64-point 4-parallel-pipelined FFTs.
Similar multiplierless architectures such as the one shown in
Fig. 6 are employed in place of complex multipliers in those
FFTs.

3. IDR Commutator

The commutator unit is one of the main power-consuming
components in the R4SDC FFT. Previous approaches to
implementing commutators include shift register (SR)
architecture [11], conventional dual-port RAM (DR)
architecture [11], and triple-port RAM (TR) architecture [13].
These architectures are based on the same interconnection
topology among different FIFO elements [13]. In [10], we

Table 4. RAMs selected in different periods.

mt 0 1 2 3

RAMs
selected

DM1
DM3

DM0,
DM2,
DM4

DM1,
DM3,
DM5

DM0
DM2

proposed a new architecture based on dual-port RAMs, termed
as IDR. IDR exploits a new interconnection topology among
dual-port RAM blocks. Figure 7 shows a block diagram of
IDR. IDR efficiently reduces the switching activity by
maintaining the unused outputs of RAMs at their previous
values. It also reduces the number of write operations to
memory blocks. Table 4 shows which RAMs are enabled for
write operation during each period. For example, for stage t,
when mt is equal to 1, new Nt-1 input data is processed. The
first Nt data is written into DM0. The previous Nt values stored
in DM0 will be read out and written into DM2 to free space for
the new ones. The same applies to DM2 and DM4.

The other three RAMs are disabled for write operation
during this period. For mt = 0 and 3, the number of RAMs
enabled is two, because the previous values stored in DM2 and
DM3 are no longer needed for subsequent outputs. Therefore,
with IDR architecture, each RAM block is enabled an average
of 5/3 times during the four periods, whereas for DR and TR,
each RAM block is enabled 4 and 10/3 times, respectively [13].
Hence, our architecture is significantly more power efficient
than both DR and TR.

4. Low-Power Butterfly

In the R4SDC FFT, the butterfly element performs the
summations of (2). The conventional butterfly architecture
consists of 6 adders/subtractors. In [14], a low-power butterfly
architecture was presented. Two 4-input summation blocks
were employed to replace six adder/subtractors. However,
since the inversions were implemented based on one’s
complement (and not two’s complement), the architecture
introduced a small error in the butterfly operations. In this paper,
we improve the architecture by eliminating this error. Figure 8
shows the improved low-power butterfly architecture. Six
inverters (Con1 to Con6) are used to generate the normal form
or the one’s complement form under the control of C5, C6, and
C7. Signal C4 controls the four multiplexers (Mux1 to Mux4) to
direct appropriate data to the inputs of the summation blocks.
Two 5-input summation blocks (SUM0 and SUM1) are
employed to generate the real and imaginary parts of the output
respectively. An additional decoder unit is used to eliminate the
error caused by the one’s-complement-based inversion.

ETRI Journal, Volume 30, Number 3, June 2008 Wei Han et al. 457

Mux1

Mux2

Fig. 8. Block diagram of improved low-power butterfly
architecture.

XOr

 Decoder
COM

COMI

Con1

Con2

Con3

Con4

Con5

Con6

Mux3

Mux4

Xr0
C7

Xr1
C5

Xi1
C5

Xi2
C7

Xr3
C6

Xi3
C6

Xmr0

Xmr1

Xmi1

Xmi2

Xmr3

Xmi3

Xi0

Xmr0

Xmi2

Xr2

C4
Xmi1

Xmi3
COM

Xmr0

Xi0

Xr2
Xmi2

Xmr1

Xmr3

COMI

SUM0

SUM1 XOi

C6

C5

C4

C4

C4

C4

IV. Results

A total of five different architectures (namely, the
conventional scheme and schemes I to IV) were implemented
for 64-point and 16-point R4SDC pipelined FFTs. The
conventional FFT and schemes I to III were implemented for
32-point FFTs. Pipelined architectures were used in the
conventional approach and in schemes I to III for three FFTs of
different sizes. Parallel-pipelined architectures were employed
in scheme IV. The input data used was 32 bits long. The 64-
point pipelined FFTs were synthesized at 16 ns clock cycles.
The 32-point and 16-point pipelined FFTs were synthesized at
12 ns clock cycles. Power evaluations were carried out, at 20 ns
for the 64-point FFTs and at 14 ns for the 32-point and 16-point
FFTs. For the parallel pipelined FFTs, the 16-point 2-parallel-
pipelined FFT was synthesized at 24 ns clock cycles and power
evaluated at 28 ns clock cycles. The 64-point 4-parallel-
pipelined FFT was synthesized at 60 ns clock cycles and power
evaluated at 80 ns clock cycles. All designs were synthesized
by the Synopsys DesignCompiler targeting the UMC 0.18 μ
CMOS technology library, and power was evaluated by
Synopsys DesignPower. Tables 5 to 7 provide information
about the main modules for each implementation. According to
the R4SDC pipelined architecture, for 32-point and 64-point
FFTs, there are three stages, each containing one butterfly
module and one commutator module. Multiplier 1 and
multipiler 2 represent the multiplier units used after
commutator 1 and commutator 2, respectively. There are only
two stages and one multiplier unit for 16-point FFTs. For all

Table 5. Implementation schemes for 16-point FFT.

Main
modules Conv. I II III IV

Butterfly 1 add-sub sum sum sum 2X sum

Butterfly 2 add-sub sum sum sum 2X simplified

Commutator 1 DR DR IDR IDR SR

Commutator 2 SR SR SR SR shuffle (TM)

Multiplier NBW NBW NBW mless 2X mless

Table 6. Implementation schemes for the 32-point FFT.

Main modules Conv. I II III

Butterfly 1 add-sub sum sum sum

Butterfly 2 add-sub sum sum sum

Butterfly 3 add-sub add-sub add-sub add-sub

Commutator 1 DR DR IDR IDR

Commutator 2 DR SR SR SR

Commutator 3 SR SR SR SR

Multiplier 1 NBW NBW NBW NBW

Multiplier 2 NBW NBW NBW mless

Table 7. Implementation schemes for the 64-point FFT.

Main modules Conv. I II III IV

Butterfly 1 add-sub sum sum sum 4X sum

Butterfly 2 add-sub sum sum sum 4X sum

Butterfly 3 add-sub sum sum sum 4X simplified

Commutator 1 DR DR IDR IDR IDR

Commutator 2 DR DR IDR IDR SR

Commutator 3 SR SR SR SR NA

Multiplier 1 NBW NBW NBW NBW mless, 3X NBW

Multiplier 2 NBW NBW NBW mless 3X mless

different size FFTs, in the conventional approach, the butterfly
modules in all stages are based on the conventional
adder/subtractor architecture (add-sub). The commutator in the
final stage is based on an SR, whereas the commutators in
other stages are based on DRs. The multipliers are based on a
non-Booth coded Wallace tree (NBW) architecture. The only
difference between the conventional approach and scheme I is
that the add-subs were replaced with a low-power butterfly
architecture (sum) as described in section III.4, except the third
stage of the 32-point FFT, where radix-2 butterflies were used.
Scheme II differs from scheme I, as the IDR architecture was
employed in stage 1 of all FFTs and stage 2 of the 64-point
FFT. Scheme III is a modified version of scheme II, where a

458 Wei Han et al. ETRI Journal, Volume 30, Number 3, June 2008

Table 8. Power consumption analysis for 16-point R4SDC FFT.

Power consumption (mW)

Conv. I II III IV

Butterfly 1 9.53 4.62 4.70 4.52 3.70

Butterfly 2 8.45 4.54 4.54 4.55 2.99

Commutator 1 18.70 18.3 12.71 12.48 10.13

Commutator 2 6.53 6.54 6.56 6.55 2.83

Multiplier 15.27 15.27 15.27 8.06 8.55

Total 63.24 54.07 48.63 39.41 30.20

Table 9. Power consumption analysis for 32-point R4SDC FFT.

Power consumption (mW)

Conv. I II III

Butterfly 1 10.66 5.61 4.87 4.62

Butterfly 2 6.423 3.54 3.54 3.53

Butterfly 3 2.365 2.37 2.37 2.36

Commutator 1 26.57 27.13 18.99 18.26

Commutator 2 10.52 10.55 10.54 10.54

Commutator 3 1.381 1.38 1.38 1.37

Multiplier 1 14.99 14.99 14.99 13.68

Multiplier 2 15.08 15.08 15.08 3.07

Total 98.18 90.81 82.17 65.34

Table 10. Power consumption analysis for 64-point R4SDC FFT.

Power consumption (mW)

Conv. I II III IV

Butterfly 1 2.80 1.55 3.05 1.45 3.56

Butterfly 2 2.82 1.58 3.46 2.97 3.24

Butterfly 3 5.31 3.11 2.93 2.93 1.11

Commutator 1 27.11 27.13 23.23 22.64 9.65

Commutator 2 13.22 13.24 8.95 8.46 3.43

Commutator 3 3.87 3.84 3.76 3.70 NA

Multiplier 1 9.45 9.45 9.45 8.86 10.07

Multiplier 2 9.87 9.87 9.87 4.98 5.29

Total 84.81 80.11 74.64 64.80 40.59

multiplierless approach (mless) was used for the multiplier unit
in the final stage, as discussed in section III.2. For scheme IV
of the 16-point FFT, the parallel-pipelined architecture was
employed, where two sum-based butterfly modules were used
in stage 1 and two simplified butterfly modules were used in
stage 2. Commutator 1 was based on SR, commutator 2 utilized
a triple-port SRAM-based shuffle, and two multiplierless units

Fig. 9. Power reduction of schemes I to IV relative to
conventional FFT.

0

20

40

60

P
ow

er
 re

du
ct

io
n

(%
)

64-point 32-point 16-point

Scheme I
Scheme II
Scheme III
Scheme IV

Fig. 10. Area comparison.

0

0.5

1.0

1.5

2.0

A
re

a
(m

m
2)

16-point 32-point 64-point

Conventional
Scheme I
Scheme II
Scheme III
Scheme IV

were utilized to replace complex multipliers. For scheme IV of
the 64-point FFT, IDR and SR were used for commutator 1
and commutator 2. Three multiplierless units were applied in
stage 2, while one multiplierless unit and three NBW-based
complex multipliers were applied in stage 1.

The comparative power and area results are shown in Figs. 9
and 10, respectively. Clearly, for 16-point FFTs, the best power
saving of 52% is achieved with scheme IV, followed by 38%,
23%, and 15% savings with schemes III, II, and I, respectively.
The power profiles for 64-point and 32-point FFTs remain the
same, achieving 52%, 24%, 12%, and 6% power reduction for
64-point FFTs from scheme IV to scheme I, and 34%, 16%,
and 8% for 32-point FFTs from scheme III to scheme I
respectively. Tables 8 to 10 show the power consumption of the
main modules for each implementation. For most pipeline-based
FFTs, the low-power butterfly consumes only about half the
power of the conventional add-sub-based butterfly architecture.
However, in schemes II and III of the 64-point FFT, sum-based
butterflies in some stages consume more power than
conventional butterflies. This is due to the increased switching
activity caused by IDR architectures, on the input data of
butterfly modules. However, IDR has less influence on both 16-
point and 32-point FFTs. For all sizes of FFTs, the multiplierless
units achieve power savings of about 50% or more than the
complex multiplier based on the non-Booth coded Wallace tree.
For commutators, IDR architectures perform better in stage 2
(32% power saving) than stage 1 (15% power saving) of 64-
point FFTs, as compared to DR architecture. For pipelined FFTs,

ETRI Journal, Volume 30, Number 3, June 2008 Wei Han et al. 459

the proposed techniques bring an area reduction to some extent.
From all of the results, it is obvious that parallel-pipelined
architectures can achieve the best power savings with the area
penalty to some extent. For 16-point FFTs, the parallel-
pipelined architecture only has 7% area overhead. However, for
64-point FFTs, the area penalty of the parallel-pipelined
architecture is 47%. Hence, scheme III has the best trade off
between power saving and area increase for various sizes of
FFTs.

V. Conclusion

In this paper, a number of high-performance FFT cores
based on combinations of hybrid low-power techniques were
presented. These low-power techniques are parallel-pipelined
architectures, the multiplierless architecture, IDR commutator
architecture, and the low-power butterfly architecture. The
impact of parameterization on power/area performance has
been studied. Based on the combination of the proposed low-
power techniques, up to 52% power saving is achieved.

References

[1] S. He and M. Torkelson, “Design and Implementation of 1024-
Point Pipeline FFT Processor,” Custom Integrated Circuits
Conference, Processing of the IEEE, May 1998, pp. 131-134.

[2] M.B. Bevan, “A Low-Power, High-Performance, 1024-Point FFT
Processor,” IEEE Journal of Solid-State Circuit, vol. 34, no. 3, Mar.
1999, pp. 308-387.

[3] L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, “A New VLSI-Oriented
FFT Algorithm and Implementation,” Proc. of Eleventh Annual
IEEE Int’l ASIC Conference, 1998, pp. 337-341.

[4] M. Hasan, T. Arslan, and J.S. Thompson, “A Novel Coefficient
Ordering Based Low Power Pipelined Radix-4 FFT Processor for
Wireless LAN Application,” IEEE Trans. on Consumer
Electronics, vol. 49, no. 1, Feb. 2003, pp. 128-134.

[5] W. Li, Y. Ma, and L. Wanhammar, “Word Length Estimation for
Memory Efficient Pipeline FFT/IFFT Processor,” Int’l Conf. on
Signal Processing Applications & Technology (ICSPAT), Nov.
1999.

[6] S. Johansson, S. He, and P. Nilsson, “Wordlength Optimization of a
Pipelined FFT Processor,” 42nd Midwest Symp. on Circuits and
Systems, vol. 1, 1999, pp. 501-503.

[7] K. Stevens and B. Suter, “A Mathematical Approach to a Low
Power FFT Architecture,” IEEE Int’l Symp. on Circuits and
Systems, vol. 2, 1998, pp. 21-24.

[8] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-Point Fourier
Transform Chip for High-Speed Wireless LAN Application Using
OFDM,” IEEE Journal of Solid-State Circuit, vol. 39, no. 3, Mar.
2004.

[9] W. Han, A.T. Erdogan T. Arslan, and M. Hasan, “A Novel Low
Power Pipelined FFT Based on Subexpression Sharing for Wireless
LAN Applications,” IEEE Signal Processing Systems Workshop
(SIPS), Oct. 2004, pp. 83-88.

[10] W. Han, A.T. Erdogan, T. Arslan, and M. Hasan, “Low Power
Commutator for Pipelined FFT Processors,” IEEE Int’l Symp. on
Circuit and Systems (ISCAS), vol. 5, Kobe, Japan, May 2005, pp.
5274-5277.

[11] G. Bi and E.V. Jones, “A Pipelined FFT Processor for Word-
Sequential Data,” IEEE Trans. on Acoustic, Speech, and Signal
Processing, vol. 37, no. 12, Dec. 1989, pp. 1982-1985.

[12] K. Hwang, Computer Arithmetic: Principles, Architecture, and
Design, John Wiley & Sons, Inc., 1979, pp. 149-151.

[13] M. Hasan and T. Arslan, “A Triple-Port RAM-Based Low Power
Commutator Architecture for a Pipelined FFT Processor,” Proc. of
the 2003 Int’l Symp. on Circuits and Systems (ISCAS '03), vol. 5,
May 2003, pp. V-353 – V-356.

[14] M. Hasan, Low Power Techniques and Architectures for
Multicarrier Wireless Receivers PhD thesis, University of
Edinburgh, UK, 2003.

Wei Han obtained his BS degree in microelectronics
from Nankai University, China. Currently, he is a
PhD student with the School of Engineering and
Electronics, University of Edinburgh, United
Kingdom. He is interested in low-power multi-
processor systems.

Ahmet T. Erdogan is a research fellow with the
System Level Integration Group in the School of
Engineering and Electronics, University of
Edinburgh, United Kingdom. He is also involved
in teaching and distance learning tutoring
activities in VLSI design and IP block authoring
at the Institute for System Level Integration,

Livingston, UK. He has MSc and PhD degrees in electronic engineering
from the University of Cardiff, UK. His research interests include low-
power VLSI design, low-power DSPs, and macro IPs.

Tughrul Arslan holds the Chair of Integrated
Electronic Systems in the School of
Engineering and Electronics of the University of
Edinburgh, and is also a co-founder and the
Chief Technical Officer of Spiral Gateway Ltd.
He is a member of the Integrated Micro and
Nano Systems (IMNS) Institute and leads the

System Level Integration group (SLIg) in the university. His research
interests include low-power system design, integrated micro and nano
systems, secure and long life wireless sensor networks, autonomous

460 Wei Han et al. ETRI Journal, Volume 30, Number 3, June 2008

systems, system-on-chip (SoC) architectures, evolvable intelligent
systems, multi-objective optimisation, and autonomous self-adaptive
behaviour in general. He has published more than 300 articles and is
the inventor of a number of patents in these areas. He was an associate
editor for IEEE Transactions on Circuits and Systems I and currently
serves as an associate editor for IEEE Transactions on Circuits and
Systems II. He also sits on the editorial board of IET Proceedings on
Computers and Digital Techniques. He is a member of the IEEE CAS
Committee on VLSI Systems and Applications and is involved in the
organisation of numerous conferences. Recently, he was the general
chair for the IEEE NASA/ESA conference on Adaptive Hardware and
Systems (AHS) and the ECSIS Bio-inspired, Learning, and Intelligent
Systems for Security Symposium (BLISS). He has been invited as a
keynote speaker to a number of international conferences.

Mohd. Hasan received the BSc Engg degree in
electronics engineering in 1990 from AMU,
Aligarh, India. Subsequently, he completed his
MTech in integrated electronics and circuits
from the Indian Institute of Technology, Delhi.
He joined the Electronics Engineering
Department of AMU, Aligarh, India, as a

lecturer in 1992. He became a reader in 1997. He completed his PhD in
low-power architectures for signal processing and telecommunications
with the School of Engineering and Electronics, University of
Edinburgh, UK, in 2004. His research interests include low-power IC
design for wireless communications and reconfigurable systems on
FPGAs.

