• Title/Summary/Keyword: Load-depth Curve

Search Result 116, Processing Time 0.02 seconds

Evaluation of Thin Film Residual Stress through the Theoretical Analysis of Nanoindentation Curve (나노 압입곡선의 이론적 분석을 통한 박막의 잔류응력 평가)

  • Lee, Yun-Hee;Jang, Jae-Il;Kwon, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1270-1279
    • /
    • 2002
  • Residual stress is a dominant obstacle to efficient production and safe usage of device by deteriorating the mechanical strength and failure properties. Therefore, we proposed a new thin film stress-analyzing technique using a nanoindentation method. For this aim, the shape change in the indentation load-depth curve during the stress-relief in film was theoretically modeled. The change in indentation depth by load-controlled stress relaxation process was related to the increase or decrease in the applied load using the elastic flat punch theory. Finally, the residual stress in thin film was calculated from the changed applied load based on the equivalent stress interaction model. The evaluated stresses for diamond-like carbon films from this nanoindentation analysis were consistent with the results from the conventional curvature method.

Enhanced Spherical Indentation Techniques for Property Evaluation (향상된 구형 압입 물성평가법)

  • Lee, Hyung-Yil;Lee, Jin-Haeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.461-471
    • /
    • 2007
  • In this work, indentation theory of Lee $et al.^{(1)}$ for 6% indentation of indenter diameter is extended to an indentation theory for 20% indentation. For shallow indentation, the effect of friction on load-depth curve is negligible, but different materials can show nearly identical load-depth curves. On the basis of this observation, a new numerical approach to deep indentation techniques is proposed by examining the finite element solutions. With this new approach, from the load-depth curve, we obtain stress-strain curve and the values of Young's modulus, yield strength and strain-hardening exponent with an average error of less than 3%.

Prediction of State of Cutting Surfaces of Polymers by Analysis of Indentation Load-depth Curve (압입하중-변위곡선 분석을 통한 폴리머 소재의 절삭표면상태 예측에 관한 연구)

  • Jeon, Eun-Chae;Kim, Jae-Hyun;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.76-81
    • /
    • 2011
  • UV imprinting process can manufacture high-functional optical components with low cost. If hard polymers can be used as transparent molds at this process, the cost will be much lower. However, there are limited researches to predict the machinability and the burr of hard polymers. Therefore, a new method to predict them by analyzing load-depth curves which can be obtained by the instrumented indentation test was developed in this study. The load-depth curve contains elastic deformation and plastic deformation simultaneously. The ratio of the plastic deformation over the sum of the two deformation is proportional to the ductility of materials which is one of the parameters of the machinability and the burr. The instrumented indentation tests were performed on the transparent molds of the hard polymers and the values of ratio were calculated. The machinability and the burr of three kinds of hard polymers were predicted by the ratio, and the prediction was in agreement with the experimental results from the machined surfaces of the three kinds of hard polymers.

Static pile load test and load trasfer measurement for large diameter piles. (대구경 말뚝정재하시험 및 하중전이 측정사례)

  • 최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.107-141
    • /
    • 2000
  • Large diameter piles can be defined as piles with diameter of at least 0.76 m (2.5 ft). In bridge foundation, large diameter piles have been used as pier foundations and their use has been increased greatly. In this study, static pile load tests for large diameter piles peformed in Kwangan Grande Bridge construction site were introduced. Also, various sensor installation methods for several types of piles (that is, open-ended steel pipe pile, drilled shafts and socketed pipe piles), pipe axial load measuring method, load transfer analysis method and pile load test results (pile-head load - settlement curve, and pile axial load distribution curve along the pile depth) were introduced.

  • PDF

Prediction of Fracture Energy of Concrete

  • Oh, Byung-Hwan;Jang, Seung-Yup;Byun, Hyung-Kyun
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.211-221
    • /
    • 1999
  • A method to determine the fracture energy of concrete is investigated. The fracture energy may be calculated from the area under the complete load-deflection curve which can be obtained from a stable three-point bend test. Several series of concrete beams have been tested. The Present experimental study indicates that the fracture energy decreases as the initial notch-to-beam depth ratio increases Some problems to be observed to employ the three-point bend method are discussed. The appropriate ratio of initial notch-to-beam depth to determine the fracture energy of concrete is found to be 0.5. It is also found that the influence of the self-weight of a beam to the fracture energy is very small A simple and accurate formula to predict the fracture energy of concrete is proposed.

  • PDF

Evaluation of Flow Stress using Geometric Conditions of Ball Indentation Tests (볼 압입 시험의 기하학적 조건과 유동 응력 곡선의 관계에 관한 연구)

  • 이병섭;이호진;이봉상
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.328-333
    • /
    • 2003
  • Ball indentation tests have been used to estimate the mechanical properties of materials by several investigators. In this study, load-depth curves from ball indentation tests were analyzed using the geometric conditions of the contact between ball and specimen. A series of numerical calculations and experimental results showed that the contact load-depth curves could be simplified by linear functions. Once we obtained the contact indentation depth from linearizing the experimental indentation curves, the estimation process of the flow properties became straight-forward and the scatter of results could be drastically reduced.

Evaluation of Flow Stress using Geometric Conditions of Ball Indentation Test (압입 시험의 기하학적 조건과 유동 응력 선도와의 관계에 관한 연구)

  • 이병섭;이호진;이봉상
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.291-294
    • /
    • 2003
  • Ball indentation tests have been used to estimate the mechanical properties of materials by some investigators. In this study, load-depth curves from ball indentation tests have been analysed using the geometric conditions of ball indentation. Series of numerical calculations and experimental results showed that those curves could be simplified by linear functions. After linearizing the indentation curves, the estimation process of the flow properties became straight forward and the scatter of results could be drastically reduced.

  • PDF

Evaluation of Lateral Pile Behavior under Cyclic Loading by Centrifuge Tests (원심모형 실험을 이용한 반복하중을 받는 모노파일 거동 평가)

  • Lee, Myungjae;Yoo, Mintaek;Park, Jeongjun;Min, Kyungchan
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.39-48
    • /
    • 2019
  • This study investigated the lateral behavior of monopile embedded in the dry sand through cyclic lateral loading test using a centrifuge test. The sand sample for the experiment was the dry Jumunjin standard sand at 80% relative density and the friction angle of $38^{\circ}$. In the experimental procedure, firstly, it was determined the static lateral bearing capacity by performing the static lateral loading test to decide the cyclic load. This derived static lateral bearing capacity values of 30%, 50%, 80%, 120% were determined as the cyclic lateral load, and the number of cycle was performed 100 times. Through the results, the experiment cyclic p-y curve was calculated, and the cyclic p-y backbone curve by depth was derived using the derived maximum soil resistance point by the load. The initial slope at the same depth was underestimated than API (1987) p-y curves, and the ultimate soil resistance was overestimated than API (1987) p-y curves. In addition, the result of the comparison with the suggested dynamic p-y curve was that the suggested dynamic p-y curve was overestimated than the cyclic p-y backbone curve on the initial slope and soil resistance at the same depth. It is considered that the p-y curve should be applied differently depending on the loading conditions of the pile.

Enhanced Spherical Indentation Techniques for Rubber Property Evaluation (향상된 구형압입 고무 물성평가법)

  • Hwang, Kyu-Min;Oh, Jopng-Soo;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1357-1365
    • /
    • 2009
  • In this study, we enhance the numerical approach of Lee et al.$^{(1)}$ to spherical indentation technique for property evaluation of hyper-elastic rubber. We first determine the friction coefficient between rubber and indenter in a practical viewpoint. We perform finite element numerical simulations for deeper indentation depth. An optimal data acquisition spot is selected, which features sufficiently large strain energy density and negligible frictional effect. We then improve two normalized functions mapping an indentation load vs. deflection curve into a strain energy density vs. first invariant curve, the latter of which in turn gives the Yeoh-model constants. The enhanced spherical indentation approach produces the rubber material properties with an average error of less than 3%.

A Berkovich Indentation Technique Based on 3D FEA solutions for Material Property Evaluation (3차원 유한요소해에 기초한 Berkovich 압입 물성평가법)

  • Kim, Min-Soo;Hyun, Hong-Chul;Lee, Kyoung-Yoon;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1-6
    • /
    • 2008
  • Due to the self-similarity of Berkovich and conical indenters, different materials may show the same loaddepth curve for single indentation. In this study, we first compare the load-depth characteristics of conical and Berkovich indenters via finite element method. We also analyze the variation of load-depth curves with angle of Berkovich indenter, indentation parameters, and material properties. With numerical regressions of obtained data, we then propose dual-Berkovich indentation formulae for material property evaluation. The proposed approach provides the values of elastic modulus, yield strength and strain-hardening exponent and corresponding stress-strain curve with an average error of less than 3%. The method is valid for any elastic indenters made of tungsten carbide and diamond for instance.

  • PDF