• 제목/요약/키워드: Lie maps

검색결과 17건 처리시간 0.019초

ADDITIVITY OF LIE MAPS ON OPERATOR ALGEBRAS

  • Qian, Jia;Li, Pengtong
    • 대한수학회보
    • /
    • 제44권2호
    • /
    • pp.271-279
    • /
    • 2007
  • Let A standard operator algebra which does not contain the identity operator, acting on a Hilbert space of dimension greater than one. If ${\Phi}$ is a bijective Lie map from A onto an arbitrary algebra, that is $${\phi}$$(AB-BA)=$${\phi}(A){\phi}(B)-{\phi}(B){\phi}(A)$$ for all A, B${\in}$A, then ${\phi}$ is additive. Also, if A contains the identity operator, then there exists a bijective Lie map of A which is not additive.

AFFINE INNER AUTOMORPHISMS BETWEEN COMPACT CONNECTED SEMISIMPLE LIE GROUPS

  • Park, Joon-Sik
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.859-867
    • /
    • 2002
  • In this paper, we get a necessary and sufficient condition for an inner automorphism between compact connected semisimple Lie groups to be an atone transformation, and obtain atone transformations of (SU(n),g) with some left invariant metric g.

THE GENERALIZED WITT ALGEBRAS USING ADDITIVE MAPS I

  • Nam, Ki-Bong
    • 대한수학회보
    • /
    • 제36권2호
    • /
    • pp.233-238
    • /
    • 1999
  • Kawamoto generalized the Witt algebra using F[${X_1}^{\pm1},....{X_n}^{\pm1}$] instead of F[x1,…, xn]. We construct the generalized Witt algebra $W_{g,h,n}$ by using additive mappings g, h from a set of integers into a field F of characteristic zero. We show that the Lie algebra $W_{g,h,n}$ is simple if a g and h are injective, and also the Lie algebra $W_{g,h,n}$ has no ad-digonalizable elements.

  • PDF

Developing maps of affinely flat lie groups

  • Kim, Hyuk
    • 대한수학회보
    • /
    • 제34권4호
    • /
    • pp.509-518
    • /
    • 1997
  • In this paper, we study the developing maps of the Lie groups with left-invariant affinely flat structures. We make some bacis observations on the nature of the developing images and show that the developing map for an incomplete affine structure splits as a product of a covering map of codimension 1 and a diffeomorphism of dimension 1.

  • PDF

STRONG COMMUTATIVITY PRESERVING MAPS OF UPPER TRIANGULAR MATRIX LIE ALGEBRAS OVER A COMMUTATIVE RING

  • Chen, Zhengxin;Zhao, Yu'e
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.973-981
    • /
    • 2021
  • Let R be a commutative ring with identity 1, n ≥ 3, and let 𝒯n(R) be the linear Lie algebra of all upper triangular n × n matrices over R. A linear map 𝜑 on 𝒯n(R) is called to be strong commutativity preserving if [𝜑(x), 𝜑(y)] = [x, y] for any x, y ∈ 𝒯n(R). We show that an invertible linear map 𝜑 preserves strong commutativity on 𝒯n(R) if and only if it is a composition of an idempotent scalar multiplication, an extremal inner automorphism and a linear map induced by a linear function on 𝒯n(R).

HARMONIC MAPS BETWEEN THE GROUP OF AUTOMORPHISMS OF THE QUATERNION ALGEBRA

  • Kim, Pu-Young;Park, Joon-Sik;Pyo, Yong-Soo
    • 충청수학회지
    • /
    • 제25권2호
    • /
    • pp.331-339
    • /
    • 2012
  • In this paper, let Q be the real quaternion algebra which consists of all quaternionic numbers, and let G be the Lie group of all automorphisms of the algebra Q. Assume that g is an arbitrary given left invariant Riemannian metric on the Lie group G. Then, we obtain a necessary and sufficient condition for an automorphism of the group G to be harmonic.

SPACES OF CONJUGATION-EQUIVARIANT FULL HOLOMORPHIC MAPS

  • KAMIYAMA, YASUHIKO
    • 대한수학회보
    • /
    • 제42권1호
    • /
    • pp.157-164
    • /
    • 2005
  • Let $RRat_k$ ($CP^n$) denote the space of basepoint-preserving conjugation-equivariant holomorphic maps of degree k from $S^2$ to $CP^n$. A map f ; $S^2 {\to}CP^n$ is said to be full if its image does not lie in any proper projective subspace of $CP^n$. Let $RF_k(CP^n)$ denote the subspace of $RRat_k(CP^n)$ consisting offull maps. In this paper we determine $H{\ast}(RF_k(CP^2); Z/p)$ for all primes p.

AUTOMORPHISMS OF A WEYL-TYPE ALGEBRA I

  • Choi, Seul-Hee
    • 대한수학회논문집
    • /
    • 제21권1호
    • /
    • pp.45-52
    • /
    • 2006
  • Every non-associative algebra L corresponds to its symmetric semi-Lie algebra $L_{[,]}$ with respect to its commutator. It is an interesting problem whether the equality $Aut{non}(L)=Aut_{semi-Lie}(L)$ holds or not [2], [13]. We find the non-associative algebra automorphism groups $Aut_{non}\; \frac\;{(WN_{0,0,1}_{[0,1,r_1...,r_p])}$ and $Aut_{non-Lie}\; \frac\;{(WN_{0,0,1}_{[0,1,r_1...,r_p])}$ where every automorphism of the automorphism groups is the composition of elementary maps [3], [4], [7], [8], [9], [10], [11]. The results of the paper show that the F-algebra automorphism groups of a polynomial ring and its Laurent extension make easy to find the automorphism groups of the algebras in the paper.

On n-skew Lie Products on Prime Rings with Involution

  • Ali, Shakir;Mozumder, Muzibur Rahman;Khan, Mohammad Salahuddin;Abbasi, Adnan
    • Kyungpook Mathematical Journal
    • /
    • 제62권1호
    • /
    • pp.43-55
    • /
    • 2022
  • Let R be a *-ring and n ≥ 1 be an integer. The objective of this paper is to introduce the notion of n-skew centralizing maps on *-rings, and investigate the impact of these maps. In particular, we describe the structure of prime rings with involution '*' such that *[x, d(x)]n ∈ Z(R) for all x ∈ R (for n = 1, 2), where d : R → R is a nonzero derivation of R. Among other related results, we also provide two examples to prove that the assumed restrictions on our main results are not superfluous.

CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1345-1356
    • /
    • 2013
  • In this paper, we study rotational and helicoidal surfaces in Euclidean 3-space in terms of their Gauss map. We obtain a complete classification of these type of surfaces whose Gauss maps G satisfy $L_1G=f(G+C)$ for some constant vector $C{\in}\mathbb{E}^3$ and smooth function $f$, where $L_1$ denotes the Cheng-Yau operator.