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DEVELOPING MAPS OF
AFFINELY FLAT LIE GROUPS

Hyuk KiMm

ABSTRACT. In this paper, we study the developing maps of the Lie
groups with left-invariant affinely flat structures. We make some
basic observations on the nature of the developing images and show
that the developing map for an incomplete affine structure splits as
a product of a covering map of codimension 1 and a diffeomorphism
of dimension 1.

1. Introduction

When a Lie group G admits a left invariant linear connection whose
torsion and curvature tensor vanish, we say that G has a left invariant
‘affinely flat (or affine in short) structure. Such structures have been
studied in different contexts and purposes by many authors (see for
example [1, 2, 3, 6, 12, 15, 18, 19, 21] as samples.) and are classified
for the geodesically complete cases on the low dimensional Lie groups
[6, 9], sometimes with compatible metrics [5, 11, 14, 17].

If a Lie group G has an affine structure, then the structure naturally
induces a so-called developing map into an affine space. Since all the
simply connected complete affine spaces are equivalent, we have a de-
veloping map into the standard Euclidean space E™ (i.e., the Euclidean
space with its standard flat connection). We intend to investigate this
map and its image in this paper.

For the complete case, the developing map becoines a diffeomorphism
onto the whole affine space E™, and hence the image of this map is not
interesting even if the different developing maps in general induce the
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different affine structures. But if we consider the general incomplete
case, the developing map and image become more interesting already
as two dimensional case shows [16]. The three and higher dimensional
cases do not seem to be well understood yet. One general result in this
direction due to Kozul is that the developing image of a unimodular
Lie group with affine structure becomes a cone if the affine structure
is convex and hyperbolic [13]. In this paper, we will show that the
developing map, in general for incomplete case, becomes a covering map
onto an algebraic set and furthermore splits as a product of a covering
map of codimension 1 and a diffeomorphism of dimension 1, along with
some other observations on the developing map. Unfortunately such
splitting is not affine and does not lead us to an induction unless we
have a stronger condition on the affine structure.

For the study of left invariant affine structures on Lie groups, it is
very convenient and conceptually simple to use a certain type of non-
associative algebra, called left symmetric algebra, and this formulation
naturally has a lot of algebraic advantages. The comparison of left sym-
metric algebra with representation view point as well as the interplay
between algebra and geometry are explained in [10] and we refer the
reader to [10] for more general setup and details. But we will explain all
the necessary background in the next section in a somewhat different
manner suitable for our purpose.

2. Canonical representation

Let & be an n-dimensional connected Lie groups with its Lie algebra
g. By taking a universal covering group with the pull back structure, we
will further assume that G is simply connected in this paper. Suppose
G has a left invariant connection V whose torsion and curvature tensor
vanish, ie., if we denote V,y as a product zy for T,y € g, then, we
have

(2.1) Ty ~ yz = [zy]
(2.2) z(yz) — y(zz) — [z,y]2 =0

for all z,y,2 € g. From these conditions, we obtain the identity
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(x,y,2) = (y,x,2), where (z,y,2) = (zy)z — z(yz) is the associator
of z,y, 2.

An algebra which satisfies this identity is called a left symmetric
algebra. Hence having a left invariant affine structure on G is the same
as having a left symmetric algebra structure on g compatible with the
Lie structure of g in the sense of (2.1).

If we denote the left (right resp.) multiplication by A (p resp.) so
that zy = A\.(y) = py(x), then the flat condition (2.2) is equivalent to
that A is a Lie algebra homomorphism, and the condition (2.1) is just
ad; = Ay —pg forall z € g.

Since G is affinely flat, each point of G has ar. open neighborhood
which is affinely equivalent to an open subset of E”. The analytic con-
tinuation of these local equivalences is well defined since G is simply
connected and depends only on the initial data. This analytic continu-
ation is called a developing map, D : G — E", and is rigid in the sense
that it is uniquely determined by a local data. Of course, the pull back
connection of the standard Euclidean connection under this developing
map is the original connection V.

The left invariance of V implies that each left translation ly :G— G,
lg(h) = gh, is to be an affine equivalence which then, via I, induces a
unique affine map ¢(g) : E* — E” such that Do l, = ¢(g9) o D. The
unique existence of ¢(g) follows from the rigidity of affine maps. (See
[10] for more details.)

From the fact that D ol, = ¢(g) o D along with the rigidity, we can
immediately deduce that ¢ is a homomorphism from G to Aff(n), the
group of affine transformetions on E™.

Now if we denote the canonical evaluation map at e € E* by Ev, :
Aff(n) — E”, Evz(a) = a-z := a(z), and let ev, = Fv, o ¢, then the
developing map D is the same as ev, with x = De, e = identity of G.
Since D is an evaluation map as well as a local diffeomorphism, =
D(G) is an open orbit of z and D = ev, becomes a covering map
onto its image. Take r = De as our origin so that the affine space
E™ becomes a vector space V = R™. We can then write Aff(n) as
a semi-direct product V x GI(V) and its Lie algebra aff(n) as a sum
V + gl(V). Hence ¢ has two components ¢ = (¢,7.) : G — V x GI(V)
and correspondingly, d¢ = (t,h) : g — V + gl(V). Note that for each
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reg,

(2.3) t(z) = %‘Oq(exptw) = %‘O(exptx) 0= d(evo)'e(m).

Now identify the vector space V = TV = T,E™ with g = T.G by
d(ev)|e = dD|e, then we obtain a developing map of G into g which,
as well, is the evaluation map at the origin of g. With these identifica-
tions, the homomorphism ¢ : G — Afi(g), will be called the canonical
representation, where Aff(g) is the group of affine transformations of
the vector space g. Note that from (2.3), the translation part of d¢ is
identity and we obtain the following diagram:

LN i0) — g+ il

g
lexp lexp
¢ TP Afi(g) = g % Gl(g)

Here we use the notation X elaborately for the linear part of d¢ antici-
pating A is the same as left multiplication.
Let g = expa, a € g and g € G. Then

1
exp(a,Ay) = 1+ (a,As) + a(a,)\a)2 4o

1 1 1
:(a+§,\a(a)+§/\§(a)+---,1+/\a+—/\2+---)

217«
— (;Lea _ 177,6/\0)

where “¢* — 1" =a+ ga-a+ —%a-(a-a)—#---.l\'otethat (a, )2, -

2
is calculated using <)€)‘1 8) <>(‘)a 8) = (’\Oﬂ /\aéa)> .-, ete.

Observe that for each y € g, v is a left invariant vector field and
since left translation corresponds to ¢(g) = (L4, g,), the derivative of y
in the direction of x can be calculated as follows:

d

d d . ths
Vay = 2 loLexptan) (0) = 5 10e™ () = ¢ (0) = Ae(w).

Therefore A is really the left multiplication as claimed above.
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From the above calculation, we have for ¢ = expa, a € 8,9 € G,
and x € g,

eve(g) = g-T =gy + Ly(x) = “e* — 1” + eMa(x),

and hence we can deduce that d(ev,)|. = 1 + p, since

d d 13 v » P
:ZIZIO Elo e — 17 + e (1)

=v+A(T)=v+v-2=(1+p,)(v).

evg(exp tv) =

d(evy)|e(v)

The function 1 + p, has a fundamental importance in understand-
ing the geometry of left symmetric algebra, i.e., that of the canonical
representation. If G has a complete left invariant affine structure, then
D = euvg is a diffeomorphism for each z € g, and x == -0 for some g € G.
Therefore ev, = evy,9 = evg o ry becomes a diffeomorphism also and
hence d(ev,)l is an isomorphism for all z € g. Conversely, if d(ev,)).
1s an isomorphism for all z, then all the orbits are open and hence by
connectedness argument, there is only one orbit and the covering map
D = ev, is a diffeomorphism since g is simply connected, which implies
that the affine structure of G is complete. Hence the affine structure is
complete if and only if 1 + p, is non-singular for all = € g, as is well
observed in [8, 9, 18].

As an extreme opposite, if 1 + p, = 0 for some z, then ev, becomes
a constant map and x is a fixed point of G-action on g. Such an affine
structure is called radiant. (See [7] for more information.) While the
developing image © of G is the whole affine space g when the affine
structure is complete, §2 is a cone for the radiant case as the following
proposition shows.

ProprosITION 2.1. Let G be a simply connected Lie group with

a left invariant radiant affine structure. Then the developing image
2 = D(G) is a cone.

Proof. Let 1 + py, = d(evy,)le = 0. By choosing zy as our new
origin, we may assume ¢(g) is a linear transformation for all ¢ € G
by conjugation with a translation. Suppose z € Q. Then since Q is
open, ax € Q for all @ € (1 —¢,1+ ¢), and hence azx = ¢ - = for some
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g € G. Now Q = ev (G) = evy 074(G) = €v,.2(G) = evaz(G) =
aeve (G) = af). Note that eva,(G) = aev,(G) since ¢(g) is linear and
#(g)(ax) = a(¢p(g)(z)) for all g € G. This shows that  is invariant
under expansion by all factors a € (1—&,1+¢) and hence by all a € R.(J

3. Developing map for incomplete affine structure

In this section, we will investigate the developing image of the general
incomplete affine structure, and start with some basic properties of a
polynomial function p(x) = det(1 + p,) : g — R which is called the
characteristic polynomial in [8].

Let z=g-0, g € G, be a point of g and let g = expa, a € g. Then
we have

€Uy = Vg = €U, 0Ty = €V, 0lg 0 Ay

where 7, : G — G is the right translation and A, : G — G is the
adjoint map given by A,(h) = ghg~!. Differentiating both sides of this
equation, we obtain

dev$|e = devo[g o dlg’e odAy— [e
=Ly o0 Ady-
— 6/\“ o e—ada,
where the second equality follows from the identity evg o ly, = ¢(g)oevg
noting that d(¢(g)) = L,. Taking determinants of both sides, we get

det(1+ p;) = det(devm‘e) = det e*e det e ~%a

— etr Aa | ewtrada — etr Da

Recall that we have ad, = A, — p, from the compatibility of our left
symmetric product with Lie structure, whence trad, = tr A, — tr p,.

The following proposition seems to be first observed by Helmsletter
in complex affine case [18] and also proved for real case in [10]. We will
give another conceptual proof here.
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PROPOSITION 3.1. Let p(z) = det(1 + p;) : g - R. Then plg-x) =
A(g)p(z), g € G, where A : G — R, is a group homomorphism given
by A(g) = det(1 + p,.,).

Proof. Observe that tr Plab] = tT Alqp) — tradj, 5 = 0 since A and ad
are Lie algebra homomorphisms. Hence trp : g -~ R is a Lie algebra
homomorphism and we get corresponding Lie group homomorphism
A1 G — Ry whose differential is tr p so that e'? = A o exp. (Note
that (7 is assumed to be simply connected.)

The above discussion shows that p o ev, o exp = e ? and hence
A = poev, at least on a neighborhood of € € G, i.e., A(g) = p(g - o)
for g near e, and if welet x =h-o, h € G, then

p(g-z) =p(gh- o) = A(gh) = A(g)A(k) = A(g)p(h - 0) = A(g)p().

This holds for all small z in a neighborhood of o € g. Since both sides
are polyromials, they agree for all z € g. If the identity holds for ¢
near e, so does for all g € G since any element of G can be written as
a product of elements near e. O

The following proposition is well known [7, 9], but we give a proof
since it is simple using the observations made so far.

PROPOSITION 3.2. Let us denote Q = ev,(G) as before. Then §? is
the connected component of {x € g|p(z) = det(1 + p,) # 0} containing
o€g.

Proof. Let Qo be the component of {z € g|p(x) # 0} which contains
0. G acts on g since det(1 + pg.o) = A(g) det(1 -+ p,;) #£ 0 if z € Q.
(1 is the orbit of 0 € Qy and hence Q) ¢ Qy. Now for any y € (2, since
dev, le = 1+ py is an isomorphism, ev, is a covering map and the orbit
of y, G-y = evy(G) is an open set. Therefore Q = ev,(G) is open, and
hence dosed in g, being the complement of other orbits in Qy. Since
Qp is connected, 2 = Q. ]

As we saw in the proof of 3.1, we have a following commutative
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diagram.
tr p
g —

exp

eprv

G _— Ry
9

| |
R
Now suppose that tr p = 0. Then A becomes a trivial homomorphism
and p(z) = det(1 + p,) = 1 identically, which shows that the affine
structure is complete. The converse is asked by Helmstetter and Perea
[8, 18], and proved by Goldman and Hirsch [7]. (See also [20], [4] for

algebraic proofs.) Hence we are naturally interested in the incomplete
case, i.e., when trp # 0. In this case, we obtain the following theorem.

p(z)=det(1+p.)

THEOREM 3.3. Suppose we have a left invariant affine structure on
a simply connected Lie group G with nontrivial trp : g — R. Then the
followings hold. '

(i) The affine structure is incomplete.

(ii) G can be written as a semi-direct product G = R - K, where
K = kerA, A : G — Ry with dA = trp, and R is the 1-parameter
subgroup generated by v with trp, = 1.

(iii) There is a equivariant diffeomorphism g : Q = ev,(G) — Rx M,
where M = K -0 and G = R - K action on R x M is given by (xx)
below.

(iv) The covering map ev, : G — QU is the product of a covering
map ev, : K — M = K -0 and a diffeomorphism ev, : R — R-0 =
9 1R x {0}).

Proof. We already discussed (i) above. Let s = tr p and choose any
v € g, with s(v) = 1 and let R = {exptv} be the 1-parameter subgroup
generated by v. Then A(exptv) = ¢**) = *®) and A : R — R,
is an isomorphism. Let £ = ker s and K = ker A. Since G/K @ R, is
contractible, 7;(K) = m;(G) for all ¢ > 0. In particular, K is connected
normal subgroup of G whose Lie algebra is €. Since A] : R — R
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is an isomorphism, A|™! gives a splitting for the short exact sequence
1-K—-G—Ri—1land G=K-R as a semidirect product.
Note that A(exptv) = e* and hence

(%) { p(K - z) = A(K)p(z) = p(z)

plexptv - z) = e'p(z)
Let M™ ! be the K-orbit of 0. Then since K action is locally simply
transitive, K is a covering space of M. Now defineamap f : RxM —
by f(t,y) = (exptv) -y = z. By (), p plays the role of a Morse
function on 2 and f becomes a diffeomorphism whose inverse is given by
f~Hz) = (t,y), where t = log p(z) and y = exp p(—tv)-z. Now R action
on (2 is given by exp(sv) - x = exp(sv) - ((exp(tv) - y) = (exp(s +t)v) -y
and K action on § is given by k-z = k- (exp(tv) - y) = exp(tv) - (k* - y)
where k' = exp(—tv)k exp(tv), which is the action of R on the normal
subgroup K giving the semi-direct product structure of G =~ K x R.
Hence the associated G = RK action on R x M induced by f will be
(+3) { exp(rv) - (t,y) = (r +t,y)

k-(t,y) = (t,k" -y), k' = exp(—tv)k exp(tv).

Note also that if v-0 = o for ¥ € G, then A(y) = A(v)-p(o) = p(y-0) =
p(o) = 1 and v € K. Hence we see that the isotropy subgroups of K
and G at o agree, i.e., K, = G,. This shows that the covering map
ev, 1 G — §11is, in fact, a product of two covering maps ev, : K — M =
K -oandev,: R— R-o (= R) and the latter is bijective. This proves
the theorem. a

We remark that in the above theorem M is a hoinogeneous algebraic
manifold given by the equation p(z) = det(1 + p,) = 1 as well as all
the level manifolds given by p~1(¢), t € R.
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