AUTOMORPHISMS OF A WEYL-TYPE ALGEBRA I

SEUL HEE CHOI

ABSTRACT. Every non-associative algebra L corresponds to its symmetric semi-Lie algebra $L_{[,]}$ with respect to its commutator. It is an interesting problem whether the equality $Aut_{non}(L) = Aut_{semi-Lie}(L)$ holds or not [2], [13]. We find the non-associative algebra automorphism groups Aut_{non} $(\overline{WN_{0,0,1}}_{[0,1,r_1,\ldots,r_p]})$ and $Aut_{semi-Lie}$ $(\overline{WN_{0,0,1}}_{[0,1,r_1,\ldots,r_p]})$, where every automorphism of the automorphism groups is the composition of elementary maps [3], [4], [7], [8], [9], [10], [11]. The results of the paper show that the **F**-algebra automorphism groups of a polynomial ring and its Laurent extension make easy to find the automorphism groups of the algebras in the paper.

1. Preliminaries

Let **N** be the set of all non-negative integers and **Z** be the set of all integers. Let **F** be a field of characteristic zero. Let **F** be the multiplicative group of non-zero elements of **F**. Let $\mathbf{F}[x_1,\ldots,x_{m+s}]$ be the polynomial ring with the variables x_1,\ldots,x_{m+s} . Let g_1,\ldots,g_n be given polynomials in $\mathbf{F}[x_1,\ldots,x_{m+s}]$. For $n,m,s\in\mathbf{N}$, let us define the commutative, associative **F**-algebra $F_{g_n,m,s}=\mathbf{F}[e^{\pm g_1},\ldots,e^{\pm g_n},x_1^{\pm 1},\ldots,x_m^{\pm 1},x_m^{\pm 1},\ldots,x_{m+s}]$ which is called a stable algebra in the paper [5] with the standard basis

$$\mathbf{B} = \{e^{a_1 g_1} \cdots e^{a_n g_n} x_1^{i_1} \cdots x_{m+s}^{i_{m+s}} | a_1, \dots, a_n, i_1, \dots, i_m \in \mathbf{Z}, i_{m+1}, \dots, i_{m+s} \in \mathbf{N}\}$$

and with the obvious addition and the multiplication [5], [6], [9], where we take appropriate g_1, \ldots, g_n so that **B** can be the standard basis of $F_{g_n,m,s}$. ∂_w , $1 \leq w \leq m+s$, denotes the usual partial derivative with respect to x_w on $F_{g_n,m,s}$. For partial derivatives $\partial_u, \ldots, \partial_v$ of $F_{g_n,m,s}$,

Received October 10, 2005.

²⁰⁰⁰ Mathematics Subject Classification: Primary 17B40, 17B56.

Key words and phrases: simple, non-associative algebra, semi-Lie algebra, automorphism, locally identity, annihilator, Jacobian conjecture, self-centralizing.

the composition $\partial_u^{j_u} \circ \cdots \circ \partial_v^{j_v}$ of them is denoted by $\partial_u^{j_u} \cdots \partial_v^{j_v}$, where $j_u, \ldots, j_v \in \mathbb{N}$. Note that $\partial_v^0(f) = f$ for any $f \in F_{g_n,m,s}$. Let D be the set

$$\{\partial_u^{j_u}\cdots\partial_v^{j_v}|1\leq u,\ldots,v\leq m+s,j_u,\ldots,j_v\in\mathbf{N}\}.$$

Let us define the vector space $WN(g_n, m, s)$ over \mathbf{F} which is spanned by the standard basis

$$\{e^{a_1g_1} \cdots e^{a_ng_n} x_1^{i_1} \cdots x_{m+s}^{i_{m+s}} \partial_u^{j_u} \cdots \partial_v^{j_v} | a_1, \dots, a_n, i_1, \dots, i_m \in \mathbf{Z},$$

$$(1) \qquad i_{m+1}, \dots, i_{m+s} \in \mathbf{N}, j_u, \dots, j_v \in \mathbf{N}, 1 \le u, \dots, v \le m+s\}.$$

Thus we may define the multiplication * on $WN(g_n, m, s)$ as follows:

$$e^{a_{11}g_{1}} \cdots e^{a_{1n}g_{n}} x_{1}^{i_{11}} \cdots x_{m+s}^{i_{1},m+s} \partial_{u}^{j_{u}} \cdots \partial_{v}^{j_{v}} * e^{a_{21}g_{1}} \cdots e^{a_{2n}g_{n}}$$

$$x_{1}^{i_{21}} \cdots x_{m+s}^{i_{2},m+s} \partial_{h}^{j_{h}} \cdots \partial_{w}^{j_{w}} = e^{a_{11}g_{1}} \cdots e^{a_{1n}g_{n}} x_{1}^{i_{11}} \cdots x_{m+s}^{i_{1},m+s}$$

$$(2) \qquad \partial_{u}^{j_{u}} \cdots \partial_{v}^{j_{v}} (e^{a_{21}g_{1}} \cdots e^{a_{2n}g_{n}} x_{1}^{i_{21}} \cdots x_{m+s}^{i_{2},m+s}) \partial_{h}^{j_{h}} \cdots \partial_{w}^{j_{w}}$$

for any basis elements $e^{a_{11}g_1}\cdots e^{a_{1n}g_n}x_1^{i_{11}}\cdots x_{m+s}^{i_{1,m+s}}\partial_u^{j_u}\cdots \partial_v^{j_v}$ and $e^{a_{21}g_1}\cdots e^{a_{2n}g_n}x_1^{i_{21}}\cdots x_{m+s}^{i_{2n+s}}\partial_h^{j_h}\cdots \partial_w^{j_w}\in WN(g_n,m,s)$ [8]. Thus we can define the Weyl-type non-associative algebra $\overline{WN_{g_n,m,s}}$ with the multiplication * in (2.3) and with the set $WN(g_n,m,s)$ [1], [3], [4], [8], [13], [14]. For $r\in \mathbb{N}$, let us define the non-associative subalgebra $\overline{WN_{g_n,m,s}}$ of the non-associative algebra $\overline{WN_{g_n,m,s}}$ spanned by

$$\{e^{a_1g_1}\cdots e^{a_ng_n}x_1^{i_1}\cdots x_s^{i_s}\partial_u^{j_u}\cdots\partial_v^{j_v}|a_1,\ldots,a_n,i_1,\ldots,i_m\in\mathbf{Z},\\i_{m+1},\ldots,i_s\in\mathbf{N},j_u,\ldots,j_v\in\mathbf{N},$$

(3)
$$j_u + \dots + j_v \le r, 1 \le u, \dots, v \le m + s$$
.

The the non-associative subalgebra $\overline{WN_{g_n,m,s_1}}$ of the non-associative algebra $\overline{WN_{g_n,m,s}}$ is the non-associative algebra $\overline{N_{g_n,m,s}}$ in the paper [1]. Generally, there is no left or right identity of $\overline{WN_{g_n,m,s}}$. The the non-associative algebra $\overline{WN_{g_n,m,s}}$ is \mathbf{Z}^n -graded as follows:

(4)
$$\overline{WN_{g_n,m,s}} = \bigoplus_{(a_1,\dots,a_n)} WN_{(a_1,\dots,a_n)},$$

where $WN_{(a_1,\dots,a_n)}$ is the vector subspace of $\overline{WN_{g_n,m,s}}$ with the standard basis

$$\{e^{a_1g_1}\cdots e^{a_ng_n}x_1^{i_1}\cdots x_{m+s}^{i_{m+s}}\partial_u^{j_u}\cdots\partial_v^{j_v}|i_1,\ldots,i_m\in \mathbf{Z},i_{m+1},\ldots,i_{m+s}, j_u,\ldots,j_v\in \mathbf{N}, 1\leq u,\ldots,v\leq m+s\}.$$

An element in $WN_{(a_1,\ldots,a_n)}$ is called an (a_1,\ldots,a_n) -homogenous element and $WN_{(a_1,\ldots,a_n)}$ is called the (a_1,\ldots,a_n) -homogeneous component. For

any basis element $e^{a_1g_1}\cdots e^{a_ng_n}x_1^{i_1}\cdots x_{m+s}^{i_{m+s}}\partial_t$ of $\overline{WN_{g_n,m,s}}$, let us define the homogeneous degree $deg_N(e^{a_1g_1}\cdots e^{a_ng_n}x_1^{i_1}\cdots x_{m+s}^{i_{m+s}}\partial_u^{j_u}\cdots\partial_v^{j_v})$ of it as follows:

$$deg_N(e^{a_1g_1}\cdots e^{a_ng_n}x_1^{i_1}\cdots x_{m+s}^{i_{m+s}}\partial_u^{j_u}\cdots \partial_v^{j_v}) = \sum_{u=1}^{m+s} |i_u|,$$

where $|i_u|$ is the absolute value of i_u , $1 \leq u \leq m+s$. Throughout this paper, for any basis element $e^{a_\mu g_\mu} \cdots e^{a_\nu g_\nu} x_\lambda^{i_\lambda} \cdots x_\sigma^{i_\sigma} \partial_u^{j_u} \cdots \partial_v^{j_v}$, we write it such that $1 \leq \mu \leq \cdots \leq \nu \leq n$, $1 \leq \lambda \leq \cdots \leq \sigma \leq m$, and $1 \leq u \leq \cdots \leq v \leq m+s$. For any element $l \in \overline{WN_{g_n,m,s}}$, we may define $deg_N(l)$ as the highest homogeneous degree of the basis terms of l. Thus for any basis elements l_1 and l_2 of $\overline{WN_{0,0,s}}$, we may write $l_1 + l_1$ or $l_2 + l_1$ well orderly with unambiguity. For any element $l \in \overline{WN_{0,0,s}}$, we may define $deg_N(l)$ as the highest homogeneous degree of each monomial of l. For any $l \in \overline{WN_{g_n,m,s}}$, let us define #(l) as the number of different homogeneous components of l. $\overline{WN_{n,m,s}}$ (resp. $\overline{WN_{g_n,m,s_r}}$) has the subalgebra WT (resp. WT_r) spanned by $\{\partial_u^{j_u} \cdots \partial_v^{j_v} | (\text{resp.} \quad j_u + \cdots + j_v \leq r,) \quad j_u, \ldots, j_v \in \mathbb{N}, 1 \leq u, v \leq s\}$ which is the right annihilator of $\overline{WN_{g_n,m,s}}$. For a subset D_1 of the set D, let us define the non-associative subalgebra $\overline{WN_{g_n,m,s}}$ with the set

$$\{f\partial|f\in F_{g_n,m,s},\partial\in D_1\}$$

Since the non-associative algebra $\overline{WN_{g_n,m,s}}$ is \mathbf{Z}^n -graded, $\overline{WN_{g_n,m,s}}_{D_1}$ is \mathbb{Z}^n -graded. A non-associative algebra A is simple, if it has no proper two sided ideal which is not zero ideal [14]. For any element l in a non-associative algebra A, l is full, if the ideal generated by l is A. Generally, the algebra $\overline{WN_{g_n,m,s}}_{[0,r]}$ or $\overline{WN_{g_n,m,s}}_r$ is not Lie admissible [1], [9], since the Jacobi identity does not hold using the commutator of the non-associative algebra $\overline{WN_{g_n,m,s}}_{[0,r]}$ or the non-associative algebra WN_{g_n,m,s_r} for r>1. For any **F**-algebra A and an element $l\in A$, an element $l_1 \in A$ is a left (resp. right) stabilizing element of l, if $l_1 * l = cl$ (resp. $l * l_1 = cl$), where $c \in \mathbf{F}$. For any element $l_1 \in A$, $l \in A$ is a locally left (resp. right) unity of $l_1 \in A$, if $l * l_1 = l_1$ (resp. $l_1 * l = l_1$) holds and throughout the paper, we read it as that l is a left unity of l_1 , etc.. A semi-Lie algebra enjoys similar results of a Lie algebra except a result which requires the Jacobi identity [3], [12], [13], [14]. A semi-Lie algebra is self-centralizing, if for any element of A, the dimension of its centralizer in A is one. If $|D_1| \neq 1$, then $\overline{WN_{0,0,1}}_{D_1}$ has no right identity and if $|D_1| = 1$, then $\overline{WN_{0,0,1}}_{D_1}$ has a right identity. $D_1 = \{0\}$ if and only if $\overline{WN_{0,0,1}}_{D_1}$ has the (two-sided) identity, i.e., the algebra is the polynomial ring.

2. Automorphism groups

Throughout this section, we put $r_1 < \cdots$ non-associative algebra $\overline{WN_{0,1,0}}_{[0,r_1,\dots,r_p]}$ and its subalgebras. The non-associative algebras

$$\overline{WN_{0,0,1}}_{[0,r_1,\ldots,r_p]}, \overline{WN_{0,0,1}}_{[r_1,\ldots,r_p]}, \overline{WN_{0,1,0}}_{[r_1,\ldots,r_p]}, \overline{WN_{0,1,0}}_{[0,r_1,\ldots,r_p]}$$
 and their corresponding semi-Lie algebras are simple.

LEMMA 2.1. For any non-associative algebra isomorphism θ of $\overline{WN_{0,0,1}}_{[0,r_1,\ldots,r_n]}$ (resp. $\overline{WN_{0,1,0}}_{[0,r_1,\ldots,r_n]}$), $\theta(c)=c$ for any $c\in \mathbf{F}$.

PROOF. Since 1 is the identity element of $\mathbf{F}[x]$ (resp. $\mathbf{F}[x^{\pm 1}]$,) the proof is straightforward. So let us omit it.

LEMMA 2.2. For any non-associative algebra automorphism θ of $\overline{WN_{0,0,1}}_{[0,1,r_1,\ldots,r_p]}$, $\theta(\partial^u)=c_u\partial^u$ holds, where c_u is a non-zero scalar for $u\in\{0,1,r_1,\ldots,r_p\}$.

PROOF. Let θ be the non-associative algebra automorphism θ of $\overline{WN_{0,0,1}}_{[0,1,r_1,\dots,r_p]}$. Note that $\theta(\mathbf{F}[x]) \subset \mathbf{F}[x]$) and $\theta(\overline{WN_{0,0,1}}_{[r_1,\dots,r_p]}) \subset \overline{WN_{0,0,1}}_{[r_1,\dots,r_p]}$. Since the dimension of the right annihilator of ∂ in $\overline{WN_{0,0,1}}_{[1,r_1,\dots,r_p]}$ is $1+r_p$, $\theta(\partial)=c_1\partial$ is obvious, where $c_1 \in \mathbf{F}^{\bullet}$. Since $\mathbf{F}[x]$ is an integral domain and $\theta(\partial *x)=1$, we have that $\theta(x)=\frac{x}{c_1}+d$ with appropriate scalars. This implies that

(5)
$$\theta(x^k) = (\frac{x}{c_1} + d)^k$$

for $k \in \mathbb{N}$. Because of the dimension of the right annihilator of ∂^u and by (5), we have that $\theta(\partial^u) = c_u \partial^u$, where $c_u \in \mathbf{F}^{\bullet}$, $u \in \{1, r_1, \dots, r_p\}$, and $c_0 = 1$. This completes the proof of the lemma.

Note 1. For any $c_1 \in \mathbf{F}^{\bullet}$ and $d \in \mathbf{F}$, let us define an elementary \mathbf{F} -map $\theta_{c_1,d}$ of $\overline{WN_{0,0,1}}_{[0,1,r_1,\ldots,r_p]}$ as follows:

(6)
$$\theta_{c_1,d}(x^u\partial^v) = c_v(\frac{x}{c_1} + d)^u\partial^v$$

then $\theta_{c_1,d}$ can be linearly extended to a non-associative algebra automorphism of $\overline{WN_{0,0,1}}_{[0,1,r_1,\ldots,r_p]}$, where $c \in \mathbf{F}$ and $c_v = c_1^v$, $v \in \{1, r_1, \ldots, r_p\}$.

LEMMA 2.3. For any non-associative algebra automorphism θ of $\overline{WN_{0,0,1}}_{[0,1,r_1,\ldots,r_n]}$, $\theta=\theta_{c_1,d}$ in Note 1.

PROOF. Let θ be the automorphism in the lemma. By Lemma 2.2, $\theta(\partial^u) = c_u \partial^u$ holds, where c_u is a non-zero scalar for $u \in \{0, 1, r_1, \dots, r_p\}$. By (5), $\theta(x^k) = (\frac{x}{c} + d)^k$ for $k \in \mathbb{N}$ and $d \in \mathbb{F}$. By $\theta(x^k * \partial^u) = \theta(x^k \partial^u)$, we have that $\theta(x^k \partial^u) = c_u(\frac{x}{c_1} + d)^k \partial^u$. By $\theta(\partial^u * x^u \partial) = u!\theta(\partial)$, we have that $c_u = c_1^u$ for $u \in \{0, 1, r_1, \dots, r_p\}$ and $c_0 = 1$. This completes the proof of the lemma.

THEOREM 2.1. The algebra automorphism group

$$Aut_{\mathbf{F}}(\overline{WN_{0,0,1}}_{[0,1,r_1,\dots,r_p]})$$

is generated by $\theta_{c_1,d}$ in Note 1 with appropriate scalars.

PROOF. The proof of the theorem straightforward by Lemma 2.2, Lemma 2.3, Lemma 2.4, and Note 1. Let us omit it.

LEMMA 2.4. For any
$$\theta$$
 in $Aut_{\mathbf{F}}(\overline{WN_{0,1,0}}_{[0,1,r_1,\dots,r_n]}), \theta(x\partial) = x\partial$.

PROOF. Let θ be an automorphism of $\overline{WN_{0,1,0}}_{[0,1,r_1,\dots,r_p]}$. By (5), for $k \in \mathbb{N}$, we have that $\theta(x^k) = (\frac{x}{c} + d)^k$ for $c \in \mathbf{F}^{\bullet}$ and $d \in \mathbf{F}$. Since x is invertible in $\mathbf{F}[x^{\pm 1}, y]$ with respect to the usual multiplication of $\mathbf{F}[x^{\pm 1}, y]$, we have that d = 0. Thus the remaining proof of the lemma is similar to the proof of Lemma 2.3. Let us omit it.

PROPOSITION 2.1. The algebra automorphism group

$$Aut_{\mathbf{F}}(\overline{WN_{0,1,0}}_{[0,1,r_1,\ldots,r_p]})$$

is generated by $\theta_{c_1,0}$ in Note 1 with appropriate scalars.

PROOF. The proof of the proposition straightforward by Theorem 2.1 and Lemma 2.4. Let us omit it.

Lemma 2.5. For any non-associative algebra automorphism θ of

$$\overline{WN_{0,0,1}}_{[r_1,r_2]}, \theta(\partial^u) = c_u \partial^u$$

holds, where c_u is a non-zero scalar for $u \in \{r_1, r_2\}$, where r_1 and r_2 are positive integers.

PROOF. Let θ be the non-associative algebra automorphism θ of $\overline{WN_{0,0,1}}_{[r_1,r_2]}$. Since the dimension of the right annihilator of ∂^{r_1} , $\theta(\partial^{r_1}) = c_1 \partial^{r_1}$ is obvious, where $c_1 \in \mathbf{F}^{\bullet}$. Because of the dimension of the

right annihilator of ∂^{r_1} , we have that $\theta(\partial^{r_1}) = c_1 \partial^{r_1}$, where $c_1 \in \mathbf{F}^{\bullet}$. By $c_1 \partial^{r_1} * \theta(x^{r_1} \partial^{r_1}) = r_1! c_1 \partial^{r_1}$, we also have that

$$\theta(x^{r_1}\partial^{r_1}) = c_1^{r_1}(\frac{x}{c_1} + d)^{r_1} + \#,$$

where # is the sum of the remaining terms of $\theta(x^{r_1}\partial^{r_1})$ and its degree is less than r_1 with appropriate scalars. This implies $\theta(\partial^{r_2}) = c_2\partial^{r_2}$, where $c_2 \in \mathbf{F}^{\bullet}$. This completes the proof of the lemma.

Lemma 2.6. For any non-associative algebra automorphism θ of

$$\overline{WN_{0,0,1}}_{[1,2]}, \theta(\partial^u) = c_u \partial^u$$

holds, where c_u is a non-zero scalar for $u \in \{1, 2\}$.

PROOF. Let θ be the non-associative algebra automorphism θ of $\overline{WN_{0,0,1}}_{[1,2]}$. Since $x\partial$ is an idempotent and it is a right identity of ∂ , by Lemma 2.5, we have that $\theta(x\partial) = c_1(\frac{1}{c_1}x+d)\partial$ with appropriate scalars. By $c_1\partial *\theta(x^2\partial) = 2c_1(\frac{1}{c_1}x+d)\partial$, we also have that

(7)
$$\theta(x^2\partial) = c_1^2(\frac{1}{c_1}x+d)^2\partial + d_1\partial + d_2\partial^2$$

with appropriate scalars. By (7) and $\theta(\partial^2 * x^2 \partial) = 2c_1 \partial$, we have that $c_1 = c_2$, i.e., $\theta(\partial^2) = c_1 \partial^2$. Since $x\partial$ is a right identity and ∂^2 annihilates $x\partial$, we have that $d_2 = 0$. By $\theta(x\partial^2 * x^2 \partial) = 2\theta(x^2 \partial)$, we have that $d_1 = 0$. Since $x^2 \partial$ and ∂ generates the non-associative subalgebra $\overline{WN_{0,0,1}}_{[1]}$ of $\overline{WN_{0,0,1}}_{[1,2]}$, We can prove that

(8)
$$\theta(x^k \partial) = c_1^k (\frac{1}{c_1} x + d)^k \partial$$

for any $k \in \mathbb{N}$. Since $x\partial^2$ annihilates itself, by $c_1\partial * \theta(x\partial^2) = c_1\partial^2$, we have that $\theta(x\partial^2) = c_1(\frac{1}{c_1}x + d_4)\partial^2$, where $d_4 \in \mathbb{F}$. By $\theta(x\partial^2 * x^3\partial) = 6\theta(x^2\partial)$, we also have that $d_4 = d$. By induction on k of $x^k\partial^2$, $k \in \mathbb{N}$, we can also prove that

(9)
$$\theta(x^k \partial^2) = c_1^k (\frac{1}{c_1} x + d)^k \partial^2.$$

This implies that $\theta = \theta_{c_1,d}$ which is defined in Note 2. This completes the proof of the lemma.

Note 2. For any $c_1 \in \mathbf{F}^{\bullet}$ and $d \in \mathbf{F}$, let us define an elementary \mathbf{F} -map $\theta_{c_1,d}$ of $\overline{WN_{0,0,1}}_{[1,2]}$ as follows:

(10)
$$\theta_{c_1,d}(x^u\partial^v) = c_v(\frac{x}{c_1} + d)^u\partial^v$$

then $\theta_{c_1,d}$ can be linearly extended to a non-associative algebra automorphism of $\overline{WN_{0,0,1}}_{[1,2]}$, where $c_v \in \mathbf{F}^{\bullet}$ and $c_v = c_1^v$, $v \in \{1,2\}$.

THEOREM 2.2. The algebra automorphism group

$$Aut_{non}(\overline{WN_{0,0,1}}_{[1,2]})$$

is generated by $\theta_{c_1,d}$ in Note 2 with appropriate scalars.

PROOF. The proof of the theorem is similar to the proof of Theorem 2.1, so let us omit it.

Proposition 2.2. Any non-zero algebra endomorphism θ of

$$\overline{WN_{0,0,1}}_{[1,2]}$$

is surjective.

PROOF. Since $\overline{WN_{0,0,1}}_{[1,2]}$ is simple, the endomorphism in the proposition is injective. The remaining proof of the proposition is straightforward by reviewing the proof of Theorem 2.2. So let us omit it.

Since the semi-Lie algebra $\overline{WN_{0,0,1}}_{[1,2]_{[,]}}$ is self-centralizing [6], the algebra enjoys similar results of Lemma 2.5, Lemma 2.6 and Note 2, thus we have the following theorem.

Theorem 2.3. The semi-Lie algebra automorphism group

$$Aut_{semi-Lie}(\overline{WN_{0,0,1}}_{[1,2]_{[,]}})$$

is generated by $\theta_{c_1,d}$ in Note 2 with appropriate scalars.

PROOF. The proof of the theorem is similar to the proof of Theorem 2.1, so let us omit it. \Box

Since the semi-Lie algebras $\overline{WN_{0,0,1}}_{[0,1,\ldots,r]_{[,]}}$, $\overline{WN_{0,0,1}}_{[0,r_1,\ldots,r_p]_{[,]}}$ and $\overline{WN_{0,1,0}}_{[1,2]_{[,]}}$ is self-centralizing [6], we have a similar results of Theorem 2.3 of the above semi-Lie algebras. Because of the dimensions of right annihilators of ∂^k , $k \in \mathbb{N}$, it is an interesting problem to find the similar formula of (9). Thus we have the following open questions:

Question 1. Find the non-associative algebra automorphism group $Aut_{non}(\overline{WN_{0,0,1}}_{[1,r_1,\ldots,r_p]})$ of the non-associative algebra $\overline{WN_{0,0,1}}_{[1,r_1,\ldots,r_p]}$.

Question 2. Find the non-associative algebra automorphism group $Aut_{non}(\overline{WN_{0,0,1}}_{[r_1,\ldots,r_p]})$ of the non-associative algebra $\overline{WN_{0,0,1}}_{[r_1,\ldots,r_p]}$ such that $r_1 \geq 1$ and p > 1.

References

- M. H. Ahmadi, K. -B. Nam, and J. Pakinathan, Lie admissible non-associative algebras, Algebra Colloquium, Vol. 12, No. 1, World Scientific, (March) 2005, 113-120.
- [2] A. A. Albert, *Power-Associative Rings*, Trans. Amer. Math. Soc. **64**, 552–593 (1948).
- [3] S. H. Choi and K. -B. Nam, The Derivation of a Restricted Weyl Type Non-Associative Algebra, Hadronic Journal 28 (2005), no. 3, 287-295.
- [4] ______, Derivations of a restricted Weyl Type Algebra I, Accepted, Rocky Mountain Journal of Mathematics, 2005.
- [5] V. G. Kac, Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom. 38 (1974), 832–834.
- [6] N. Kawamoto, A. Mitsukawa, K. -B. Nam, and M. -O. Wang, The automorphisms of generalized Witt type Lie algebras, Journal of Lie Theory, 13 Vol(2), Heldermann Verlag, 2003, 571–576.
- [7] K. -B. Nam, On Some Non-Associative Algebras Using Additive Groups, Southeast Asian Bulletin of Mathematics, Vol. 27, Springer Verlag, 2003, 493–500.
- [8] K. -B. Nam and S. H. Choi, On Evaluation Algebras, SEAMS Bull Mathematics 29 (2005), no. 2, 381–385.
- [9] ______, On the Derivations of Non-Associative Weyl-type Algebras, Appear, Southeast Asian Bull. Math., 2005.
- [10] K. -B. Nam, Y. Kim and M. -O. Wang, Weyl-type Non-Associative Algebras I, IMCC Proceedings, 2004, SAS Publishers, 147–155.
- [11] K.-B. Nam and M.-O. Wang, Notes on Some Non-Associative Algebras, Journal of Applied Algebra and Discrete Structured, Vol 1, No. 3, 159–164.
- [12] A. N. Rudakov, Groups of Automorphisms of Infinite-Dimensional Simple Lie Algebras, Math. USSR-Izvestija 3 (1969), 707-722.
- [13] R. M. Santilli, An introduction to Lie-admissible algebras, Nuovo Cimento Suppl. 6 (1968), no. 1, 1225–1249.
- [14] R. D. Schafer, Introduction to nonassociative algebras, Dover, 1995, 128–138.

Department of Mathematics Jeonju University Chon-ju 560-759, Korea *E-mail*: chois@jj.ac.kr