• Title/Summary/Keyword: Lie group

Search Result 234, Processing Time 0.023 seconds

THE STRUCTURE OF A CONNECTED LIE GROUP G WITH ITS LIE ALGEBRA 𝖌=rad(𝖌)⊕ 𝔰𝒍(2,𝔽)

  • WI, MI-AENG
    • Honam Mathematical Journal
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 1995
  • The purpose of this study is to construct the structure of the connected Lie group G with its Lie algebra $g=rad(g){\oplus}sl(2, \mathbb{F})$, which conforms to Stellmacher's [4] Pushing Up. The main idea of this paper comes from Stellmacher's [4] Pushing Up. Stelhnacher considered Pushing Up under a finite p-group. This paper, however, considers Pushing Up under the connected Lie group G with its Lie algebra $g=rad(g){\oplus}sl(2, \mathbb{F})$. In this paper, $O_p(G)$ in [4] is Q=exp(q), where q=nilrad(g) and a Sylow p-subgroup S in [7] is S=exp(s), where $s=q{\oplus}\{\(\array{0&*\\0&0}\){\mid}*{\in}\mathbb{F}\}$. Showing the properties of the connected Lie group and the subgroups of the connected Lie group with relations between a connected Lie group and its Lie algebras under the exponential map, this paper constructs the subgroup series C_z(G)

  • PDF

HYPERELASTIC LIE QUADRATICS

  • Ozkan Tukel, Gozde;Turhan, Tunahan;Yucesan, Ahmet
    • Honam Mathematical Journal
    • /
    • v.41 no.2
    • /
    • pp.369-380
    • /
    • 2019
  • Inspired by the problem of finding hyperelastic curves in a Riemannian manifold, we present a study on the variational problem of a hyperelastic curve in Lie group. In a Riemannian manifold, we reorganize the characterization of the hyperelastic curve with appropriate constraints. By using this equilibrium equation, we derive an Euler-Lagrange equation for the hyperelastic energy functional defined in a Lie group G equipped with bi-invariant Riemannian metric. Then, we give a solution of this equation for a null hyperelastic Lie quadratic when Lie group G is SO(3).

ALGEBRAIC STRUCTURES IN A PRINCIPAL FIBRE BUNDLE

  • Park, Joon-Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.371-376
    • /
    • 2008
  • Let $P(M,G,{\pi})=:P$ be a principal fibre bundle with structure Lie group G over a base manifold M. In this paper we get the following facts: 1. The tangent bundle TG of the structure Lie group G in $P(M,G,{\pi})=:P$ is a Lie group. 2. The Lie algebra ${\mathcal{g}}=T_eG$ is a normal subgroup of the Lie group TG. 3. $TP(TM,TG,{\pi}_*)=:TP$ is a principal fibre bundle with structure Lie group TG and projection ${\pi}_*$ over base manifold TM, where ${\pi}_*$ is the differential map of the projection ${\pi}$ of P onto M. 4. for a Lie group $H,\;TH=H{\circ}T_eH=T_eH{\circ}H=TH$ and $H{\cap}T_eH=\{e\}$, but H is not a normal subgroup of the group TH in general.

  • PDF

HARMONIC HOMOMORPHISMS BETWEEN TWO LIE GROUPS

  • Son, Heui-Sang;Kim, Hyun Woong;Park, Joon-Sik
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, we get a complete condition for a group homomorphism of a compact Lie group with an arbitrarily given left invariant Riemannian metric into another Lie group with a left invariant metric to be a harmonic map, and then obtain a necessary and sufficient condition for a group homomorphism of (SU(2), g) with a left invariant metric g into the Heisenberg group (H, $h_0$) to be a harmonic map.

LIE SEMIGROUPS IN O(2,2)

  • Choi, Keun-Bae;Lim, Yong-Do
    • East Asian mathematical journal
    • /
    • v.19 no.2
    • /
    • pp.273-289
    • /
    • 2003
  • We study $Ol'shanski\v{i}$ semigroups admitting triple decompositions in the Lie group O(2,2).

  • PDF

LEFT-INVARIANT FLAT RIEMANNIAN STRUCTURES ON LIE GROUPS

  • Park, Kyeong-Su
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.453-459
    • /
    • 2004
  • A left-invariant flat Riemannian connection on a Lie group makes its Lie algebra a left symmetric algebra compatible with an inner product. The left symmetric algebra is decomposed into trivial ideal and a subalgebra of e(l). Using this result, the Lie group is embedded isomorphically into the direct product of O(l) $\times$ $R^{k}$ for some nonnegative integers l and k.

Stable Rank of Group C*-algebras of Some Disconnected Lie Groups

  • Sudo, Takahiro
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.203-219
    • /
    • 2007
  • We estimate the stable rank and connected stable rank of group $C^*$-algebra of certain disconnected solvable Lie groups such as semi-direct products of connected solvable Lie groups by the integers.

  • PDF

Development of Geometry in the 19th century and Birth of Lie's theory of Groups (19세기 기하학의 발달과 리군론의 시작)

  • Kim, Young Wook;Lee, Jin Ho
    • Journal for History of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.157-172
    • /
    • 2016
  • Sophus Lie's research is regarded as one of the most important mathematical advancements in the $19^{th}$ century. His pioneering research in the field of differential equations resulted in an invaluable consolidation of calculus and group theory. Lie's group theory has been investigated and constantly modified by various mathematicians which resulted in a beautifully abstract yet concrete theory. However Lie's early intentions and ideas are lost in the mists of modern transfiguration. In this paper we explore Lie's early academic years and his object of studies which clarify the ground breaking ideas behind his theory.

THE TRANSFORMATION GROUPS AND THE ISOMETRY GROUPS

  • Kim, Young-Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.47-52
    • /
    • 1989
  • Methods of Riemannian geometry has played an important role in the study of compact transformation groups. Every effective action of a compact Lie group on a differential manifold leaves a Riemannian metric invariant and the study of such actions reduces to the one involving the group of isometries of a Riemannian metric on the manifold which is, a priori, a Lie group under the compact open topology. Once an action of a compact Lie group is given an invariant metric is easily constructed by the averaging method and the Lie group is naturally imbedded in the group of isometries as a Lie subgroup. But usually this invariant metric has more symmetries than those given by the original action. Therefore the first question one may ask is when one can find a Riemannian metric so that the given action coincides with the action of the full group of isometries. This seems to be a difficult question to answer which depends very much on the orbit structure and the group itself. In this paper we give a sufficient condition that a subgroup action of a compact Lie group has an invariant metric which is not invariant under the full action of the group and figure out some aspects of the action and the orbit structure regarding the invariant Riemannian metric. In fact, according to our results, this is possible if there is a larger transformation group, containing the oringnal action and either having larger orbit somewhere or having exactly the same orbit structure but with an orbit on which a Riemannian metric is ivariant under the orginal action of the group and not under that of the larger one. Recently R. Saerens and W. Zame showed that every compact Lie group can be realized as the full group of isometries of Riemannian metric. [SZ] This answers a question closely related to ours but the situation turns out to be quite different in the two problems.

  • PDF

CLASSIFICATION OF SOLVABLE LIE GROUPS WHOSE NON-TRIVIAL COADJOINT ORBITS ARE OF CODIMENSION 1

  • Ha, Hieu Van;Hoa, Duong Quang;Le, Vu Anh
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1181-1197
    • /
    • 2022
  • We give a complete classification of simply connected and solvable real Lie groups whose nontrivial coadjoint orbits are of codimension 1. This classification of the Lie groups is one to one corresponding to the classification of their Lie algebras. Such a Lie group belongs to a class, called the class of MD-groups. The Lie algebra of an MD-group is called an MD-algebra. Some interest properties of MD-algebras will be investigated as well.