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HYPERELASTIC LIE QUADRATICS

Gözde Özkan Tükel∗, Tunahan Turhan, and Ahmet Yücesan

Abstract. Inspired by the problem of finding hyperelastic curves
in a Riemannian manifold, we present a study on the variational
problem of a hyperelastic curve in Lie group. In a Riemannian man-
ifold, we reorganize the characterization of the hyperelastic curve
with appropriate constraints. By using this equilibrium equation,
we derive an Euler-Lagrange equation for the hyperelastic energy
functional defined in a Lie group G equipped with bi-invariant Rie-
mannian metric. Then, we give a solution of this equation for a null
hyperelastic Lie quadratic when Lie group G is SO(3).

1. Introduction

Elastic curves proposed by Bernoulli in 1740 and determined by Euler
in 1744 are critical points of the bending energy functional

∫ (
κ2 + λ

)
ds,

where κ and λ are respectively the curvature of a curve and the Lagrange
multiplier, acting on suitable space of curves [4, 10]. This problem is
generalized to finding extremals (called as hyperelastic curves or free
hyperelastic curves when λ = 0) of the functional

∫
(κr + λ) ds for any

natural number r ≥ 2 [1, 2]. Clearly that this is the functional of classical
elastic curves when r = 2 [4, 10]. In [1], authors characterized the free
hyperelastic curves in a Riemannian manifold. Motivated by this study,
we consider the problem of finding hyperelastic curves in Lie Groups
equipped with a bi-invariant Riemannian metric. On the other hand,
a curve defined in the Lie group corresponds to the Lie reduction in
its Lie algebra. Here, we characterize the hyperelastic curve in the Lie
groups with aid of the corresponding hyperelastic Lie quadratic in the Lie
algebra. Then, we describe hyperelastic Lie quadratures in so(3) which
is the Lie algebras of SO(3) by using the same method in [8]. Finally,
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we give a solution of the differential equation for a null hyperelastic Lie
quadratic in so(3).

2. Preliminaries

In this section, we recall some notions in Riemannian manifold. We
reorganize the characterization of hyperelastic curves in a Riemannian
manifold [1]. Also, we give basic facts for the structure of Lie groups
and a geometrical construction that will be needed in Section 3.

Let M be a n−dimensional Riemannian manifold with Riemannian
metric <,>, Levi-Civita connection5 and Riemannian curvature tensor
R. We consider the family of C∞ curves as follows

Ωv0,v1 = {γ| γ : [0, `] ⊂ R→M
γ (i`) = pi, pi ∈M,

.
γ (i`) = vi, vi ∈ TpiM∥∥ .γ (t)

∥∥2
= 1, i = 0, 1}.

For a curve γ ∈ Ωv0,v1 ,
∥∥∥∇ d

dt

.
γ (t)

∥∥∥ is the geodesic curvature of γ. Then

a hyperelastic curve is critical points of the following functional

(1)

F : Ωv0,v1 → [0,∞)

γ → F (γ) =
∫̀
0

(κr + λ) dt,

where λ is the Lagrange multiplier and r ≥ 2 is a natural number. Crit-
ical points of the functional (1) are characterized by the Euler-Lagrange
equation

(2)

52
d
dt

(
< 5

d
dt

γ̇(t),5
d
dt

γ̇(t) >
r
2
−1 5

d
dt

γ̇(t)

)
+< 5

d
dt

γ̇(t),5
d
dt

γ̇(t) >
r
2
−1R(5

d
dt

γ̇(t), γ̇(t))γ̇(t)

+5
d
dt

(λγ̇(t))=0,

where for some constant b̃ ∈ R,

λ =
2r − 1

r
< 5

d
dt

γ̇(t),5
d
dt

γ̇(t) >
r
2 +b̃

(see [1]). In the following proposition, we reconsider Eq. (2) as solu-
tions of an unconstrained differential equation with initial conditions of
a particular form.
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Proposition 2.1. Any C∞ curve γ : [0, `] → M is a hyperelastic
curve if and only if the Euler Lagrange equation (2) for all t ∈ [0, `] and
following equalities are satisfied

1 = ‖γ̇(t0)‖ ,

0 = < 5
d
dt

γ̇

∣∣∣∣
t=t0

, γ̇(t0) >,

0 = < 52
d
dt

γ̇

∣∣∣∣
t=t0

, γ̇(t0) > +

∥∥∥∥∥5 d
dt

γ̇

∣∣∣∣
t=t0

∥∥∥∥∥
2

,

for some t0 ∈ [0, `].

A Lie group G is a C∞ manifold that is also a group with smooth
group operations, that is,

µ : G×G → G and ı : G → G
(x, y) → µ (x, y) = xy x → ı (x) = x−1

are both smooth. The left and right multiplications by x ∈ G are the
diffeomorphisms Lx, Rx : G → G defined by Lx(y) := xy and Rx(y) :=
yx, respectively. If a Riemannian metric <,> satisfies for all x, y ∈ G
and u, v ∈ TyG

(3) < u, v >y=< d (Lx)y (u) , d (Lx)y (v) >Lx(y),

then the metric <,> is called left-invariant. Similarly, if it satisfies for
the same conditions

< u, v >y=< d (Rx)y (u) , d (Rx)y (v) >Rx(y),

then it is called right-invariant. A Riemannian metric <,> is known bi-
invariant if it is invariant both left and right invariance [3, 7, 9]. Through-
out this paper, we suppose that the manifold M is a Lie group G
equipped with bi-invariant Riemannian metric <,> .

For a differentiable vector field X in a Lie group G, if dLxX = X for
all x ∈ G, then X is a left-invariant vector field. Left invariant vector
fields in G admits defining a Lie algebra g = TeG in identity element
of G. Bi-invariance of a left-invariant metric <,> for all X,Y, Z ∈ g is
equivalent

(4) < [X,Y ], Z >=< [Z,X], Y >,

where [, ] is the Lie bracket [3, 8]. In addition, ‖.‖ will denote the norm
corresponding to the restriction of <,> to g.
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Now, we suppose that γ : I ⊂ R→G be a differentiable curve on G.
Then we define V : I ⊂ R→ g by

(5) V (t) =
(
dLγ(t)−1

)
γ(t)

·
γ (t) .

The curve V is known the Lie reduction corresponding to γ. (5) is also
equivalent to the first order differential equation

·
γ (t) =

(
dLγ(t)

)
e
V (t)

[8].

Lemma 2.2. Let γ : I → G be a differentiable curve. Suppose that
the Lie reduction of γ is given by V : I → g. Then we have for all t ∈ I
in the following equations:

i)
(
dLγ(t)−1

)
γ(t)
∇ d

dt

·
γ(t)=

·
V (t) ,

ii)
(
dLγ(t)−1

)
γ(t)
∇2

d
dt

(
< 5

d
dt

γ̇(t),5
d
dt

γ̇(t) >
r
2
−1 5

d
dt

γ̇(t)

)
=

d2

dt2

(
< V̇ (t) , V̇ (t) >

r
2
−1
)
V̇ (t)

+2
d

dt

(
<
·
V (t) ,

·
V (t) >

r
2
−1

)(
V̈ (t) +

1

2
[V (t) , V̇ (t)]

)
+ < V̇ (t) , V̇ (t)>

r
2
−1(d

3V
dt3

+ [V (t) , V̈ (t)] +
1

4
[V (t) , [V (t) , V̇ (t)]]),

iii)
(
dLγ(t)−1

)
γ(t)

< 5
d
dt

γ̇(t),5
d
dt

γ̇(t) >
r
2
−1R(5

d
dt

γ̇(t), γ̇(t))γ̇(t)

= −1

4
< V̇ (t) , V̇ (t)>

r
2
−1[V (t) , [V (t) , V̇ (t) ]],

iv)
(
dLγ(t)−1

)
γ(t)
5

d
dt

[(
< 5

d
dt

γ̇(t),5
d
dt

γ̇(t) >
r
2

)
γ̇(t)

]
=
d

dt

(
< V̇ (t) , V̇ (t) >

r
2

)
V (t)+

(
< V̇ (t) , V̇ (t) >

r
2

)
V̇ (t) .

Proof. Let {E1, E2, ..., En} be an orthonormal basis of the Lie algebra
g. We define for 1 ≤ i, j ≤ n(

dLγ(t)

)
e

: Tγ(t)G → Tγ(t)G

Ei →
(
dLγ(t)

)
e
Ei = Ēi (γ(t)) .

From left-invariance of the metric <,>, we have

< Ēi (γ) , Ēj (γ) >=<
(
dLγ(t)

)
e
Ei,
(
dLγ(t)

)
e
Ej >= 〈Ei, Ej〉 = δij .
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Thus
{
Ē1 (γ) , Ē2 (γ) , ..., Ēn (γ)

}
is an orthonormal basis for Tγ(t)G. By

using the fact

(6) ∇Ēi
Ēj =

1

2
[Ēj , Ēi]

(see [5]), we have(
∇Ēi

Ēj
)
γ

=
1

2
[Ēj , Ēi]γ =

1

2
[
(
dLγ(t)

)
e
Ej ,

(
dLγ(t)

)
e
Ei]

=
1

2

(
dLγ(t)

)
e

[Ej , Ei].

Then, from the following equation

.
γ (t) =

(
dLγ(t)

)
e
V (t) =

(
dLγ(t)

)
e

∑
i

viEi

=
∑
i

vi
(
dLγ(t)

)
e
Ei =

∑
i

viĒi (γ) ,

we can write

(7)
·
γ (t) =

∑
i

viĒi (γ) .

i) By using (6) and (7), we obtain

∇ d
dt

·
γ (t) =

∑
i

dvi
dt
Ēi (γ) +

∑
i

vi∇ d
dt
Ēi (γ)

=
∑
i

dvi
dt
Ēi (γ) +

∑
i,j

vivj
(
∇Ēi

Ēj
)
γ

=
∑
i

dvi
dt
Ēi (γ) +

1

2

∑
i,j

vivj [Ēj , Ēi]γ

=
∑
i

dvi
dt
Ēi (γ) +

1

2
[
∑
j

vjĒj ,
∑
i

viĒi]γ

=
∑
i

dvi
dt
Ēi (γ) +

1

2
[
.
γ (t) ,

.
γ (t)]

=
∑
i

dvi
dt
Ēi (γ) =

∑
i

dvi
dt

(
dLγ(t)

)
e
Ei

=
(
dLγ(t)

)
e

∑
i

dvi
dt
Ei =

(
dLγ(t)

)
e

·
V (t) .
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ii) Firstly, we can easily get from (3) and (i) of Lemma 2.2

(8) κ =

∥∥∥∥5 d
dt

γ̇(t)

∥∥∥∥ =

∥∥∥∥(dLγ(t)−1

)
γ(t)
5

d
dt

γ̇(t)

∥∥∥∥ =
∥∥∥V̇ (t)

∥∥∥ .
Then, by using (i) of Lemma 2.2 and equations (6− 8) ,we have

5
d
dt

(∥∥∥∥5 d
dt

γ̇(t)

∥∥∥∥r−2

5
d
dt

γ̇(t)

)

=
d

dt

(∥∥∥∥5 d
dt

γ̇(t)

∥∥∥∥r−2
)(

dLγ(t)

)
e

∑
i

dvi
dt
Ei

+

∥∥∥∥5 d
dt

γ̇(t)

∥∥∥∥r−2
[(
dLγ(t)

)
e

∑
i

d2vi
dt2

Ei +
dvi
dt

(
vj∇Ēi

Ēj
)]

=
(
dLγ(t)

)
e

[
d
dt

(∥∥∥V̇ (t)
∥∥∥r−2

)
V̇ (t)

+
∥∥∥V̇ (t)

∥∥∥r−2 (
V̈ (t) + 1

2 [V (t), V̇ (t)]
)]

and

52
d
dt

(∥∥∥∥5 d
dt

γ̇(t)

∥∥∥∥r−2

5
d
dt

γ̇(t)

)

= d2

dt2

(∥∥∥V̇ (t)
∥∥∥r−2

)
V̇ (t) + 2 d

dt

(∥∥∥V̇ (t)
∥∥∥r−2

)
(V̈ (t) +

1

2
[V (t), V̇ (t)])

+
∥∥∥V̇ (t)

∥∥∥r−2
(d

3V
dt3

+ [V (t), V̈ (t)] +
1

4
[V (t), [V (t), V̇ (t)]])

The proof of (iii) can be easily seen from [5] and the proof of (iv) is a
result of (i) and (ii) of Lemma 2.2.

3. The Euler-Lagrange Equation

In this section, we give the following theorem which is the main result
of this paper.

Theorem 3.1. Any differentiable curve γ : I → G in the Lie group
G is called a hyperelastic curve if and only if the curve V : I → g, which
is the Lie reduction of γ, in the Lie algebra g satisfies

(9) ‖V (t)‖2 = 1,
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(10)

d
dt

(∥∥∥V̇ (t)
∥∥∥r−2

V̇ (t)

)
=
∥∥∥V̇ (t)

∥∥∥r−2
[V̇ (t), V (t)]

− (< V (t), C > +
∥∥∥V̇ (t)

∥∥∥r)V (t) + C

for some constant C ∈ g and all t ∈ I.

Proof. Assume that γ : I → G is a hyperelastic curve in G. Then we
have from (3) and (5)

1 =

∥∥∥∥ ·
γ(t)

∥∥∥∥2

=

∥∥∥∥(dLγ(t)−1

)
γ(t)

·
γ(t)

∥∥∥∥2

= ‖V (t)‖2 .

If γ is a hyperelastic curve, then γ satisfies the Euler-Lagrange equation

(2). Applying
(
dLγ(t)−1

)
γ(t)

to (2) and using Lemma 2.2, we obtain

d

dt

(
d

dt

(∥∥∥V̇ (t)
∥∥∥r−2

) ·
V (t)

)
= − d

dt

(∥∥∥V̇ (t)
∥∥∥r−2

V̈ (t)

)
+
d

dt

((∥∥∥V̇ (t)
∥∥∥r−2

)
[V̇ (t), V (t)]

)
− d

dt
(
(

(2r−1)
r

∥∥∥V̇ (t)
∥∥∥r + b̃

)
V (t)).

Integrating once, we have

(11)

d

dt

(∥∥∥V̇ (t)
∥∥∥r−2 ·

V (t)

)
=
∥∥∥V̇ (t)

∥∥∥r−2
[V̇ (t), V (t)]

−
(

(2r−1)
r

∥∥∥V̇ (t)
∥∥∥r + b̃

)
V (t) + C

where C ∈ g is a constant. The first and second derivative of (9) are
found as follows

(12) < V̇ (t), V (t) >= 0,

(13) < V̈ (t), V (t) > +
∥∥∥V̇ (t)

∥∥∥2
= 0.

Taking inner product of (11) with V̇ (t) , applying (12) and using (4) ,
we get

(14)

d

dt

(∥∥∥V̇ (t)
∥∥∥r−2

)∥∥∥V̇ (t)
∥∥∥2

+
∥∥∥V̇ (t)

∥∥∥r−2
< V̈ (t), V̇ (t) >=< V̇ (t), C > .

Integrating (14) , yields

(15)
∥∥∥V̇ (t)

∥∥∥r = r
r−1 < V (t), C > +b
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for some constant b ∈ R. If we take inner product of (11) with V (t) and
using (13), then we have

(16) r−1
r

∥∥∥V̇ (t)
∥∥∥r =< V (t), C > −b̃.

Substituting (15) in (16), we obtain b̃ = 1−r
r b. If we combine (16) and

(11) , we get (10).
Conversely, let V : I → g corresponds the Lie reduction of a curve

γ : I → G. Suppose that ‖V (t)‖2 = 1 and Eq. (10) is satisfied. From
Lemma 2.2, we have

‖V (t)‖2 =

∥∥∥∥(dLγ(t)−1

)
γ(t)

·
γ(t)

∥∥∥∥2

=

∥∥∥∥ ·
γ(t)

∥∥∥∥2

= 1.

Then it remains the show that γ satisfies (2). From (16) and the deriv-
ative of (10), we obtain

52
d
dt

(∥∥∥V̇ (t)
∥∥∥r−2

V̇ (t)

)
= 5

d
dt

(
∥∥∥V̇ (t)

∥∥∥r−2
[V̇ (t), V (t)])

−5
d
dt

(
(2r−1

r

∥∥∥V̇ (t)
∥∥∥r + b̃)V (t)

)
.

Applying (5) and using Lemma 2.2, we have for all t ∈ I

(
dLγ(t)−1

)
γ(t)

(52
d
dt

(∥∥∥∥5 d
dt

γ̇(t)

∥∥∥∥r−2

5
d
dt

γ̇(t)

)

+

∥∥∥∥5 d
dt

γ̇(t)

∥∥∥∥r−2

R(5
d
dt

γ̇(t), γ̇(t))γ̇(t)

+5
d
dt

(

(
2r − 1

r

∥∥∥∥5 d
dt

γ̇(t)

∥∥∥∥r + b̃

)
γ̇(t)) = 0.

Since
(
dLγ(t)−1

)
γ(t)

is an isomorphism, γ satisfies (2).

Definition 3.2. Any curve V : I → g satisfying (9) and (10) for
some C ∈ g and all t ∈ I is called a hyperelastic Lie quadratic with
constant C. Also, V defined by (5) is called a hyperelastic Lie quadratic
associated with γ, if γ is a hyperelastic curve.

Corollary 3.3. Let V : I → g be a hyperelastic Lie quadratic. If we
define W : I → g by

(17) W (t) =
d

dt

(∥∥∥V̇ (t)
∥∥∥r−2

V̇ (t)

)
+ (< V (t), C > +

∥∥∥V̇ (t)
∥∥∥r)V (t),
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then we have for all t ∈ I
(18) Ẇ (t) = [W (t), V (t)]

and ‖W (t)‖ is a constant.

Proof. Substituting (17) in (10), we obtain

(19) W (t) =
∥∥∥V̇ (t)

∥∥∥r−2
[V̇ (t), V (t)] + C.

Differentiating (19), we calculate

(20) Ẇ (t) = [
d

dt

(∥∥∥V̇ (t)
∥∥∥r−2

V̇ (t)

)
, V (t)].

Combining (17) and (20), we find

Ẇ (t) = [W (t)− (< V (t), C > +
∥∥∥V̇ (t)

∥∥∥r)V (t), V (t)] = [W (t), V (t)].

So, we have
Ẇ (t) = [W (t) , V (t)].

Finally, we calculate in the following result

d

dt
‖W (t)‖2 =

d

dt
< W (t),W (t) >

= 2 < Ẇ (t),W (t) >= 2 < [W (t), V (t)],W (t) >= 0.

This implies that ‖W (t)‖ is a constant.

Differential equations of the form (18) are called Lax equations. The
Lax equation (18) is crucial to solution of (5) or equivalently γ̇(t) =(
dLγ(t)

)
e
V (t) for a hyperelastic curve γ in term of its hyperelastic Lie

quadratic V . In [8], Popiel and Noakes prove that the differential equa-
tion that gives the elastic curve can expand the whole real axis by Pi-
card’s theorem and Lax equations. Then by the Theorem 3.1 in [8] and
the Proposition 2.1, all hyperelastic curves in G extend uniquely to R
when G is compact.

4. Hyperelastic Curves in SO(3)

In this section, we suppose G = SO (3) which is the group of rotations
of Euclidean 3−space. Then the Lie algebra of G is g = so(3) which is
the set off all skew symmetric real 3× 3 matrices. Recall that so(3) is a
Lie algebra with the Lie bracket

[, ] : so(3)× so(3) → so(3)
(A,B) → [A,B] = AB −BA
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and E3 is a Lie algebra with the Lie bracket the cross product ×. The
map
B : E3 → so(3) defined by

B(v)w = v × w

is a Lie algebra isomorphism.
Let γ : R→SO(3) be a hyperelastic curve and Ṽ : R→so(3) the associ-

ated hyperelastic Lie quadratic with the constant C̃. Define the inverse
function as follows:

(21) V = B−1(Ṽ ):R→E3

and C = B−1(C̃) for convenience. Since B is a Lie algebra isomorphism
and isometry, V satisfies for all t ∈ I

(22) ‖V (t)‖2 =
∥∥∥B−1(Ṽ (t))

∥∥∥2
=
∥∥∥Ṽ (t)

∥∥∥2
= 1

and from (10)

(23)

d
dt

(∥∥∥V̇ (t)
∥∥∥r−2

V̇ (t)

)
=
∥∥∥V̇ (t)

∥∥∥r−2
V̇ (t)× V (t)

− (< V (t), C > +
∥∥∥V̇ (t)

∥∥∥r)V (t) + C.

This implies V is a hyperelastic Lie quadratic with constant C in the Lie
algebra (E3,×). We study with V rather than Ṽ , solving (23) with (22).
So, we can say that for any A ∈ SO(3) and t0 ∈ R, t → A(V (t)) is a
hyperelastic Lie quadratic in E3 with constant A(C) and t→ V (t−t0) is
a hyperelastic Lie quadratic in E3 with constant C by local uniqueness
in Picard theorem.

Now, we may suppose without loss of generality that

C = [0 0 c]T for some c ∈ R, and V1(0) = 0,

where we write

(24) V (t) =
[
V1(t) V2(t) V3(t)

]T
in the next part of the paper. If V is a hyperelastic Lie quadratic in
E3 with constant C = 0, then we call that V is null hyperelastic Lie
quadratic (see [6] and [8]). Then Eq. (23) reduces to

(25)
d

dt

(∥∥∥V̇ (t)
∥∥∥r−2

V̇ (t)

)
=
∥∥∥V̇ (t)

∥∥∥r−2
V̇ (t)× V (t)−

∥∥∥V̇ (t)
∥∥∥r V (t).
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Now we suppose that
∥∥∥V̇ (t)

∥∥∥ = const. Then we have from the first

derivative of
∥∥∥V̇ (t)

∥∥∥
< V̈ (t), V̇ (t) >= 0.

This implies that

(26)
d

dt

(∥∥∥V̇ (t)
∥∥∥r−2

)
= (r − 2)

∥∥∥V̇ (t)
∥∥∥r−4

< V̈ (t), V̇ (t) >= 0.

From (26), (25) reduces to

V̈ (t) = V̇ (t)× V (t)−
∥∥∥V̇ (t)

∥∥∥2
V (t).

Then we can give the following proposition:

Proposition 4.1. If V is a null hyperelastic Lie quadratic and sat-
isfies (24), then we have for all t ∈ R,

V (t) =
[
a sin(wt) a cos(wt)

√
1− a2

]T
where a =

√
b/b+ 1 and w = 1/

√
1− a2.

Conclusion

We present a variational study of the hyperelastic curve which is a
critical point of geometric energy functional related to the curvature
of a curve, subject to suitable boundary conditions in Lie group with
bi-invariant metric. We derive the Euler-Lagrange equations for a hyper-
elastic curve with regard to the Lie reduction of the curve in a Lie group
G equipped with bi-invariant Riemannian metric. In this way, we have
defined a new type of curve, the ”hyperelastic Lie quadratic”. We give
a special solution for a null hyperelastic Lie quadratic for G = SO(3).
A general solution of this type curves is an open problem and can be
studied future works.

Acknowledgement

The authors want to express her/his thanks to the referees for her/his
valuable comments and suggestions.
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