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Abstract. We estimate the stable rank and connected stable rank of group C∗-algebras

of certain disconnected solvable Lie groups such as semi-direct products of connected solv-

able Lie groups by the integers.

Introduction

The stable rank for C∗-algebras was introduced by Rieffel [13] as a noncom-
mutative counterpart to the covering dimension of topological spaces. Indeed, the
stable rank of the commutative C∗-algebra of all continuous functions on a com-
pact Hausdorff space is computed by the covering dimension of the space (see (F2)
below). For the (full) group C∗-algebras of Lie groups that are noncommutative in
general but close to commutative C∗-algebras in some sense such as K-theory, the
Rieffel’s question [13, Question 4.14] is to describe the stable rank of the group C∗-
algebras in terms of the structure of Lie groups. For this interesting question, some
partial answers were obtained by Sheu [15], Takai-Sudo [23], [24] and the author
[16], [17], [18] and [21] for the connected case, and by [19] and [20] for the discon-
nected case. On the other hand, in [22] we showed that the group C∗-algebras of
some connected Lie groups such as the motion groups have stable rank one.

Our question as the motivation of this paper is whether or not the group C∗-
algebras of disconnected solvable Lie groups such as semi-direct products of con-
nected solvable Lie groups by the integers have stable rank one. We have already
considered the similar question for the connected solvable case, and obtained some
results in [23], [24], [17] and [22]. Since the class of C∗-algebras with stable rank
one is quite important in the C∗-algebra theory, our question should be reasonable
and interesting in some sense. Indeed, among other things, the stable rank one
condition for C∗-algebras implies the cancellation of their projections (cf. [2]). See
also [14] for some relations among stable rank, connected stable rank, and K-groups
for C∗-algebras.

As the main results we show that the group C∗-algebras of semi-direct products
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of (most) non-compact connected solvable Lie groups by the integers Z have stable
rank more than one, and the group C∗-algebras of semi-direct products of com-
pact connected commutative Lie groups (that are the k-tori Tk), more generally, of
compact Lie groups, by Z have stable rank one and connected stable rank two. In
addition, we obtain the stable rank estimates in the case of semi-direct products of
compact Lie groups by finite cyclic groups. For the proofs, we consider the struc-
ture of those group C∗-algebras, and use some basic formulas for the K-groups of
C∗-algebras such as the Pimsner-Voiculescu six term exact sequence and some basic
results on the stable rank and connected stable rank of C∗-algebras (see below). Our
main interest in this paper is the lower bounds for the stable rank of those group
C∗-algebras. This point should be new and interesting. See [17], [18], · · · , [21] for
some results on the upper bounds for the stable rank of group C∗-algebras. We
also consider the estimates of the stable rank for group C∗-algebras of semi-direct
products of amenable or non-amenable locally compact groups by their quotient
group C∗-algebras.

Notation and facts. Let C0(X) be the C∗-algebra of continuous complex-valued
functions vanishing at infinity on a locally compact Hausdorff space X. When X
is compact, we set C(X) = C0(X). For a locally compact group G, we denote by
C∗(G) its full group C∗-algebra (cf. Pedersen [11, Chapter 7]). Let K be the C∗-
algebra of compact operators on a separable, infinite dimensional Hilbert space. For
a C∗-algebra A (or its unitization A+), its stable rank and connected stable rank
are denoted by sr(A), csr(A) respectively (cf. Rieffel [13]). By definition, for n ∈ N,
sr(A) ≤ n if and only if Ln(A) is dense in An, and csr(A) ≤ n if and only if GLm(A)0
acts transitively on Lm(A) for all m ≥ n, and equivalently, Lm(A) for all m ≥ n
are connected, where Ln(A) = {(aj)n

j=1 ∈ An |
∑n

j=1 a∗jaj is invertible in A}, and
GLm(A)0 is the connected component of GLm(A) with the identity matrix ([13,
Corollary 8.5]). Recall the following formulas:

(F1) : csr(A) ≤ sr(A) + 1 for any C∗-algebra A,

(F2) : sr(C(X)) = [dim X/2] + 1, csr(C(X)) ≤ [(dim X + 1)/2] + 1,

(F3) : For an exact sequence of C∗-algebras: 0 → I → A → A/I → 0, sr(I) ∨
sr(A/I) ≤ sr(A) ≤ sr(I) ∨ sr(A/I) ∨ csr(A/I), csr(A) ≤ csr(I) ∨ csr(A/I),

where dim X is the covering dimension of X, and [x] means the maximum integer
≤ x, and ∨ is the maximum and ∧ is the minimum (Rieffel [13, Proposition 1.7,
Theorems 4.3, 4.4, 4.11, Corollary 4.10 and p.328], Nistor [8] and Sheu [15, The-
orems 3.9 and 3.10]). Let A oα G be the (full) crossed product of a C∗-algebra
A by a locally compact group G with α an action, that is, a homomorphism from
G to the automorphism group of A (cf. [11]). We often omit the symbol α in
what follows. Let K0(A), K1(A) be the K-groups of a C∗-algebra A. The following
Pimsner-Voiculescu six term exact sequence (P-V sequence, for short) is known (cf.
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Blackadar [2, Section 10.2]):

K0(A) id−α∗−−−−→ K0(A) i∗−−−−→ K0(A oα Z)x y
K1(A oα Z) i∗←−−−− K1(A) id−α∗←−−−− K1(A),

where id means the identity map on A, i is the canonical inclusion from A to
Aoα Z, and i∗, id−α∗ = (id−α)∗ are the induced maps from i, id−α on K-groups
respectively. Furthermore,

(F4) : sr(A oα Z) ≤ sr(A) + 1, csr(A oα Z) ≤ sr(A) + 1

for a (unital) C∗-algebra A (in the second) by Rieffel [13, Theorem 7.1 and Corollary
8.6].

1. The main results

Theorem 1.1. Let G be a simply connected solvable Lie group and G oα Z a
semi-direct product of G by Z with α an action. Then

sr(C∗(G oα Z)) ≥ 2.

Moreover, we have csr(C∗(G oα Z)) ≥ 2.

Proof. First note that C∗(G oα Z) ∼= C∗(G) oα Z. Since G is a simply connected
solvable Lie group, the quotient group G/[G, G] of G by the (Lie) commutator
[G, G] of G is isomorphic to Rn for some n ≥ 1 since G/[G, G] is a simply connected
commutative Lie group (note that there exists the following exact sequence: 0 =
π1(G) → π1(G/[G, G]) → [G, G]/[G, G]0 = 0, where π1(·) means the fundamental
group and [G, G]0 is the connected component of the identity). Then we have the
quotient: C∗(G) oα Z → C∗(G/[G, G]) oα Z → 0 since the spectrum of G/[G, G]
just corresponds to the space of 1-dimensional representations of G, and this space
is invariant under the action α. Furthermore, by the Fourier transform we have

C∗(G/[G, G]) oα Z ∼= C0((G/[G, G])∧) oα̂ Z
= C0((Rn)∧) oα̂ Z = C0(Rn) oα̂ Z,

where (G/[G, G])∧ means the dual group of G/[G, G], and α̂ is the dual action of
α via the duality on Rn. If the action α̂ on Rn is trivial, then

C0(Rn) oα̂ Z ∼= C0(Rn)⊗ C∗(Z) ∼= C0(Rn)⊗ C(T) ∼= C0(Rn × T).

Since dim(Rn × T) ≥ 2, it follows by (F2) that sr(C0(Rn × T)) ≥ 2. Thus, we may
assume that α̂ on Rn is nontrivial in the following. Since the origin 0 of Rn is fixed
under the action α̂, we have

(E) : 0→ C0(Rn \ 0) o Z→ C0(Rn) oα̂ Z→ C o Z→ 0
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and C o Z = C∗(Z) ∼= C(T) by the Fourier transform.
Applying the P-V sequence to the crossed product C0(Rn) oα̂ Z in the middle

of the above exact sequence (E), we obtain

K0(C0(Rn)) id−α̂∗−−−−→ K0(C0(Rn)) i∗−−−−→ K0(C0(Rn) oα̂ Z)x y
K1(C0(Rn) oα̂ Z) i∗←−−−− K1(C0(Rn)) id−α̂∗←−−−− K1(C0(Rn)).

When n is even, by the Bott periodicity, K0(C0(Rn)) ∼= K0(C) ∼= Z and
K1(C0(Rn)) ∼= K1(C) ∼= 0. Thus, the following commutative diagram holds:

Z id−α̂∗−−−−→ Z i∗−−−−→ K0(C0(Rn) oα̂ Z)x y
K1(C0(Rn) oα̂ Z) i∗←−−−− 0 id−α̂∗←−−−− 0.

Since the map id− α̂∗ in the first line is zero, we deduce that K0(C0(Rn) o Z) ∼= Z
and K1(C0(Rn) o Z) ∼= Z. Indeed, since the group for α̂ is Z, there exists an
implementing unitary U such that α̂1 = AdU (the adjoint action by U). Note also
that for the crossed product A oα Z of a (unital) C∗-algebra A by an action α of Z,
there exists an implementing unitary U such that UaU∗ = α1(a) for a ∈ A, where U
is not necessarily contained in A or its multiplier algebra (if A is non unital, and if
so, we can consider its unitization by C and the trivially extended action on it) (for
example, the rotation algebra generated by two unitaries U, V with V U = e2πiθUV
for some real number θ can be written as the crossed product C(T) oθ Z with the
action θ by θ-rotation on the torus T (cf. [1])). Therefore, for [p] the class in Z at
the upper left corner of the diagram, we have

α̂∗([p]) = [AdU(p)] = [UpU∗] = [p] = id([p]).

Moreover, note that there exists a homotopy path pt for 0 ≤ t ≤ 1 between UpU∗

and p defined by

pt = wt

(
p 0
0 0

)
w∗

t , and

w0 =
(

U 0
0 U∗

)
, w1 =

(
1 0
0 1

)
wt =

(
U 0
0 1

)
ut

(
U∗ 0
0 1

)
u∗t for 0 ≤ t ≤ 1, where

ut =
(

cos(πt/2) − sin(πt/2)
sin(πt/2) cos(πt/2)

)
(cf. [25]). When n is odd, we obtain the same conclusion for K-groups of C0(Rn)oZ
by the similar way.
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Furthermore, applying the P-V sequence to the crossed product C0(Rn \ 0) o Z
in the left of the above exact sequence (E), we obtain

K0(C0(Rn \ 0)) id−α̂∗−−−−→ K0(C0(Rn \ 0)) i∗−−−−→ K0(C0(Rn \ 0) oα̂ Z)x y
K1(C0(Rn \ 0) oα̂ Z) i∗←−−−− K1(C0(Rn \ 0)) id−α̂∗←−−−− K1(C0(Rn \ 0)).

Moreover, for n ≥ 2 we have

K0(C0(Rn \ 0)) ∼= K0(C0(R× Sn−1)) ∼= K1(C(Sn−1))
∼= K1(C0(Rn−1)+) ∼= K1(C0(Rn−1))
∼= 0 if n is odd, and Z if n is even,

K1(C0(Rn \ 0)) ∼= K1(C0(R× Sn−1)) ∼= K0(C(Sn−1))
∼= K0(C0(Rn−1)+) ∼= K0(C0(Rn−1))⊕ Z
∼= Z⊕ Z if n is odd, and Z if n is even.

When n = 1, we obtain

K0(C0(R \ 0)) ∼= K0(C0(R))⊕K0(C0(R)) ∼= K1(C)⊕K1(C) ∼= 0

and K1(C0(R \ 0)) ∼= Z2. Therefore, it follows that K0(C0(Rn \ 0) o Z) ∼= Z2 and
K1(C0(Rn \ 0) o Z) ∼= Z2.

Summing up, we obtain the following six-term exact sequence associated with
the above exact sequence (E):

Z2 −−−−→ Z −−−−→ Z

∂

x y
Z ←−−−− Z ←−−−− Z2,

where ∂ means the index map. Note that K0(C(T)) ∼= Z and K1(C(T)) ∼= Z. It
follows from this commutative diagram that the map ∂ is nonzero. Therefore, by
using [7] or [9], we have sr(C0(Rn)oZ) ≥ 2. By (F3), we conclude sr(C∗(G)oαZ) ≥
2.

To estimate the connected stable of C∗(G) oα Z, we use the P-V sequence:

K0(C∗(G)) id−α∗−−−−→ K0(C∗(G)) i∗−−−−→ K0(C∗(G) oα Z)x y
K1(C∗(G) oα Z) i∗←−−−− K1(C∗(G)) id−α∗←−−−− K1(C∗(G)).

Since G is a simply connected solvable Lie group, it is isomorphic to the k-times
successive semi-direct product: G ∼= R o R o · · · o R for k = dim G (see [6]). By
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using Connes’ Thom isomorphism for crossed products by R (cf. [2, Section 10.2])
repeatedly,

K0(C∗(G)) ∼= K0(C∗(Gk−1) o R) ∼= K1(C∗(Gk−1)) ∼= K1(C∗(Gk−2) o R)
∼= K0(C∗(Gk−2)) ∼= · · · ∼= Z if k even, and 0 if k odd,

K1(C∗(G)) ∼= K1(C∗(Gk−1) o R) ∼= K0(C∗(Gk−1)) ∼= K0(C∗(Gk−2) o R)
∼= K1(C∗(Gk−2)) ∼= · · · ∼= 0 if k even, and Z if k odd,

where G = Gk = Gk−1 o R, G1 = R and Gl = Gl−1 o R inductively for 1 ≤
l ≤ k. Therefore, if dim G is even, we obtain K1(C∗(G) o Z) ∼= Z since the map
id − α̂∗ from K0(C∗(G)) in the P-V sequence is zero. If dim G is odd, we obtain
K1(C∗(G) o Z) ∼= Z since the map id − α̂∗ from K1(C∗(G)) ∼= K0(C) in the P-V
sequence is zero. Since K1(C∗(G) o Z) is nonzero, we obtain csr(C∗(G) o Z) ≥ 2
by [4, Corollary 1.6]. �

Remark. When the action α is trivial, we have C∗(G) oα Z ∼= C∗(G) ⊗ C∗(Z) ∼=
C∗(G)⊗C(T). In addition, C0(Rn) oα̂ Z ∼= C0(Rn×T) so that sr(C0(Rn×T)) ≥ 2
by (F2) since n ≥ 1. Hence, sr(C∗(G) ⊗ C(T)) ≥ 2. If G is a connected solvable
Lie group, then G/[G, G] is isomorphic to the product group Rn × Tm for some
n, m ≥ 0. If n ≥ 1, then we have sr(C∗(G oα Z)) ≥ 2 by considering the quotient
from C0(Rn × Zm) oα̂ Z to C0(Rn) oα̂ Z and by the same proof above.

Using (F4) we obtain sr(C∗(G oα Z)) ≤ sr(C∗(G)) + 1 for G a Lie group and
α an action. Note that C∗(G) is non-unital in general (if G non-discrete). See
[17], [18] and [21] for the estimates of sr(C∗(G)) for G certain (simply connected
solvable) Lie groups. See also [19] and [20] for G certain disconnected solvable Lie
groups.

As a comparison, we now consider the case of semi-direct products G oα Zk of
simply connected solvable Lie groups G by finite cyclic groups Zk. By the same
analysis as the above proof, the group C∗-algebra C∗(G oα Zk) has a quotient
isomorphic to C0(Rn) oα̂ Zk for n ≥ 1. However, if α̂ on Rn is trivial, then

C0(Rn) oα̂ Zk
∼= C0(Rn)⊗ C∗(Zk) ∼= C0(Rn)⊗ C(Zk) ∼= ⊕kC0(Rn).

Therefore, if n = 1, then sr(C0(Rn) oα̂ Zk) = 1. Thus, we can not use the same
argument as the above proof. Even if n ≥ 2, we can not use the exact sequence:
0→ C0(Rn \0)oZk → C0(Rn)oZk → CoZk → 0 as (E) in the proof. The reason
is that the index map of K-groups associated with this exact sequence vanishes since
K1(C o Zk) ∼= K1(⊕kC) ∼= 0. However, the estimate sr(C0(Rn) o Zk) ≥ 2 could be
deduced from that C0(Rn \ 0) o Zk

∼= C0(R+) ⊗ C(Sn) o Zk and dim Sn/Zk ≥ 2,
where Sn means the n-dimensional sphere.

We extensively consider the case of semi-direct products of connected solvable
Lie groups by Z. By a technical reason, connected solvable Lie groups are restricted
to be linearizable as follows:

Theorem 1.2. Let G be a linearizable connected solvable Lie group and G oα Z a
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semi-direct product of G by Z. If G is noncompact, then

sr(C∗(G oα Z)) ≥ 2.

Proof. First recall that a connected solvable Lie group G is linearizable, that is, it
has a faithful finite-dimensional representation if and only if G is isomorphic to a
semi-direct product N o Tk of a simply connected solvable Lie group N by a torus
Tk for k ≥ 0 ([10, Theorem 7.1 in page 66]). Thus, we have

C∗(G oα Z) ∼= C∗(N o Tk) oα Z ∼= (C∗(N) o Tk) oα Z.

Note the quotient: (C∗(N)oTk)oα Z→ (C0(Rn)oTk)o(α̂,α) Z, where N/[N,N ] ∼=
Rn for some n ≥ 1 since N is a simply connected solvable Lie group and G is
noncompact, and (α̂, α) means that the action by Z on C0(Rn) is α̂, and on Tk is
α. Since the origin 0 in Rn is fixed under α̂, we have

(E2) : 0→ (C0(Rn \ 0) o Tk) o Z ≡ I→
(C0(Rn) o Tk) o(α̂,α) Z→ C∗(Tk) o Z→ 0.

We first compute the K-groups of the crossed product C0(Rn) o Tk as follows:

K0(C0(Rn) o Tk) ∼= KTk

0 (C0(Rn))

∼=

{
KTk

0 (C) ∼= K0(C∗(Tk)) ∼= K0(C0(Zk)) ∼= ⊕ZkZ if n even,
KTk

0 (C0(R)) ∼= KTk

1 (C) ∼= K1(C∗(Tk)) ∼= K1(C0(Zk)) = 0 if n odd,

where KTk

∗ (·) for ∗ = 0, 1 means the equivariant K-theory (cf. [2, Sections 11.7 and
11.9] for the basic formula for crossed products by compact groups and for the Bott
periodicity). Furthermore,

K1(C0(Rn) o Tk) ∼= K0(C0(R)⊗ C0(Rn) o Tk) ∼= KTk

0 (C0(Rn+1))

∼=

{
KTk

0 (C0(R)) ∼= KTk

1 (C) ∼= K1(C∗(Tk)) ∼= K1(C0(Zk)) = 0 if n even,
KTk

0 (C) ∼= K0(C∗(Tk)) ∼= K0(C0(Zk)) ∼= ⊕ZkZ if n is odd.

Applying the P-V sequence to (C0(Rn) o Tk) o Z in the middle of the above exact
sequence (E2), we obtain that if n is even, then

⊕ZkZ −−−−→ ⊕ZkZ −−−−→ K0((C0(Rn) o Tk) o Z)x y
K1((C0(Rn) o Tk) o Z) ←−−−− 0 ←−−−− 0

which implies K∗((C0(Rn) o Tk) o Z) ∼= ⊕ZkZ for ∗ = 0, 1. If n is odd, then

0 −−−−→ 0 −−−−→ K0((C0(Rn) o Tk) o Z)x y
K1((C0(Rn) o Tk) o Z) ←−−−− ⊕ZkZ ←−−−− ⊕ZkZ
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which implies K∗((C0(Rn) o Tk) o Z) ∼= ⊕ZkZ for ∗ = 0, 1.
We next compute the K-groups of the crossed product C0(Rn\0)oTk as follows:

K0(C0(Rn \ 0) o Tk) ∼= KTk

0 (C0(Rn \ 0)) ∼= KTk

0 (C0(R× Sn−1))

∼= KTk

1 (C(Sn−1)) ∼= KTk

1 (C0(Rn−1)+) ∼= KTk

1 (C0(Rn−1))

∼=

{
KTk

1 (C0(R)) ∼= KTk

0 (C) ∼= K0(C∗(Tk)) ∼= K0(C0(Zk)) ∼= ⊕ZkZ if n even,
KTk

1 (C) ∼= K1(C∗(Tk)) ∼= K1(C0(Zk)) = 0 if n odd.

Furthermore,

K1(C0(Rn \ 0) o Tk) ∼= KTk

1 (C0(Rn \ 0))

∼= KTk

1 (C0(R× Sn−1)) ∼= KTk

0 (C(Sn−1)) ∼= KTk

0 (C0(Rn−1)+)

∼= KTk

0 (C0(Rn−1))⊕K0(C∗(Tk))

∼=

{
KTk

0 (C0(R))⊕K0(C0(Zk)) if n is even
KTk

0 (C)⊕K0(C0(Zk)) if n is odd

∼=

{
K1(C∗(Tk))⊕ (⊕Zk

Z) ∼= ⊕Zk
Z if n is even

K0(C∗(Tk))⊕ (⊕Zk
Z) ∼= (⊕ZkZ)⊕ (⊕Zk

Z) if n is odd.

Applying the P-V sequence to (C0(Rn \ 0) o Tk) o Z = I in the left of the above
exact sequence (E2), we obtain that if n is even, then

⊕ZkZ −−−−→ ⊕ZkZ −−−−→ K0((C0(Rn \ 0) o Tk) o Z)x y
K1((C0(Rn \ 0) o Tk) o Z) ←−−−− ⊕ZkZ ←−−−− ⊕ZkZ

which implies K∗((C0(Rn \ 0) o Tk) o Z) ∼= (⊕ZkZ)⊕ (⊕ZkZ) for ∗ = 0, 1. Further-
more, if n is odd, then

0 −−−−→ 0 −−−−→ K0(I)x y
K1(I) ←−−−− (⊕ZkZ)⊕ (⊕ZkZ) ←−−−− (⊕ZkZ)⊕ (⊕ZkZ)

which implies K∗((C0(Rn \ 0) o Tk) o Z) ∼= (⊕ZkZ)⊕ (⊕ZkZ) for ∗ = 0, 1.
Furthermore, note that C∗(Tk) ∼= C0(Zk). Then K0(C0(Zk)) ∼= ⊕ZkZ and

K1(C0(Zk)) ∼= 0. Applying the P-V sequence to C∗(Tk) o Z in the right of the
above exact sequence (E2), we obtain

⊕ZkZ −−−−→ ⊕ZkZ −−−−→ K0(C∗(Tk) o Z)x y
K1(C∗(Tk) o Z) ←−−−− 0 ←−−−− 0
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Hence, it follows that K∗(C∗(Tk) o Z) ∼= ⊕ZkZ for ∗ = 0, 1.
Summing up the above argument, we obtain the following six-term exact se-

quence of K-groups associated with the above exact sequence:

(⊕ZkZ)⊕ (⊕ZkZ) −−−−→ ⊕ZkZ −−−−→ ⊕ZkZ

∂

x y
⊕ZkZ ←−−−− ⊕ZkZ ←−−−− (⊕ZkZ)⊕ (⊕ZkZ)

Therefore, the index map ∂ is nonzero. Hence sr((C0(Rn) o Tk) o Z) ≥ 2 (cf. [7],
[9]). Thus, sr(C∗(G oα Z)) ≥ 2. �

Remark. Let G ∼= N o Tk be as above. If K1(C∗(G oα Z)) is nonzero, we obtain
csr(C∗(G oα Z)) ≥ 2 by [4, Corollary 1.6]. In fact, by the P-V sequence,

K0(C∗(G)) −−−−→ K0(C∗(G)) −−−−→ K0(C∗(G) oα Z)x y
K1(C∗(G) oα Z) ←−−−− K1(C∗(G)) ←−−−− K1(C∗(G))

and K∗(C∗(G)) ∼= K∗(C∗(N)oTk) ∼= KTk

∗ (C∗(N)) for ∗ = 0, 1. Since N is a simply
connected solvable Lie group, it is a successive semi-direct product by R. Thus, if
the Thom isomorphism for equivalent K-theory is true, we obtain

KTk

∗ (C∗(N)) ∼= KTk

∗ (C∗(Ns−1) o R) ∼= KTk

∗+1(C
∗(Ns−1))

∼= KTk

∗+1(C
∗(Ns−2) o R) ∼= · · · ∼= KTk

∗+s(C)
∼= K∗+s(C∗(Tk)) ∼= K∗+s(C0(Zk))
∼= ⊕ZkZ if ∗+ s = 0 (mod 1), and 0 if ∗+ s = 1 (mod 1),

where N = Ns = Ns−1 o R, N1 = R, Nl = Nl−1 o R inductively for 1 ≤ l ≤ s and
s = dim N . Therefore, we obtain K1(C∗(G) oα Z) ∼= ⊕kZ. However, the Thom
isomorphism for equivalent K-theory seems to be unknown in the literature so far,
and it is desirable but might be wrong in general. Also, since N is isomorphic to
Rf o R o · · ·o R for some f ≥ 1, if Tk is non-trivial only on Rf , then

C∗(N) o Tk ∼= C∗(Rf ) o Tk o R · · ·o R, and

K∗(C∗(Rf ) o Tk o R · · ·o R) ∼= K∗+s−f (C∗(Rf ) o Tk) ∼= KTk

∗+s−f (C0(Rf ))

∼= KTk

∗+s(C) ∼= K∗+s(C∗(Tk))

for ∗ = 0, 1 by using the Connes’ Thom isomorphism and the Bott periodisity (cf.
[12, Section 6.3]). An action of Tk on R is always trivial, but an action of Tk on
Re for e ≥ 2 is nontrivial in general so that an action of Tk does not necessarily
commute with (s− f)-actions of R as above.
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If a linearizable connected solvable Lie group is compact, then it is isomorphic
to Tk. In this case, we obtain the following:

Theorem 1.3. For a semi-direct product Tk oα Z, we have

sr(C∗(Tk oα Z)) = 1.

Moreover, we have csr(C∗(Tk oα Z)) = 2.
As a note, the proof below includes the case by case study as examples for the

convenience, and the general case is given at the bottom of the proof.

Proof. Note that C∗(Tk oα Z) ∼= C∗(Tk) oα Z ∼= C0(Zk) oα̂ Z. If α̂ is trivial on a
direct factor Zl of Zk, then

C0(Zk) oα̂ Z ∼= C0(Zl)⊗ C0(Zk−l) oα̂ Z ∼= ⊕ZlC0(Zk−l) oα̂ Z.

Therefore, we may assume that α̂ is nontrivial on each direct factor of Zk.
Case 1: k = 1. Note that an automorphism of T is either trivial or the reflection.

When α1 is the reflection, the duality 〈α1(z), n〉 = (z̄)n = (z)−n = 〈z,−n〉 =
〈z, α̂1(n)〉 for z ∈ T and n ∈ Z holds. Thus, we consider the decomposition Z =
{0}t∪n∈Z+{n,−n} (a disjoint union). Then we have the direct sum decomposition:
C0(Z)oα̂Z ∼= C∗(Z)⊕(⊕Z+C(X2)oα̂Z), where X2 = {±n}. Moreover, since α̂2

1 = 1
on X2,

0→ S(C(X2) oα̂ Z2)→ C(X2) oα̂ Z→ C(X2) oα̂ Z2 → 0,

where S(C(X2) oα̂ Z2) means the suspension C0(R) ⊗ C(X2) oα̂ Z2, and we have
C(X2)oα̂ Z2

∼= M2(C) (cf. [2] for the exact sequence of crossed products by Z with
periods). By the six-term exact sequence of K-groups,

0 −−−−→ K0(C(X2) oα̂ Z) −−−−→ Z

∂

x y
0 ←−−−− K1(C(X2) oα̂ Z) ←−−−− Z.

Therefore, the index map ∂ is zero. Since sr(S(M2(C))) = 1 and sr(M2(C)) = 1
by [13, Theorem 6.1], it follows from [7] or [9] that sr(C(X2) oα̂ Z) = 1. Hence
sr(C0(Z) oα̂ Z) = 1.

Case 2: k ≥ 1 and α̂ is the reflection on each direct factor Z of Zk. By the
duality, α̂1(n) = (−n) = ((−nj)) for n = (nj) ∈ Zk. Thus, we have the orbit
decomposion of Zk (a disjoint union): Zk = {0k} t (t(Zk\{0k})/Z2{n,−n}), where
(Zk \ {0k})/Z2 = (Zk \ {0k})/Z means the orbit space of Zk \ {0k} by Z. Then we
have C0(Zk) oα̂ Z = C∗(Z) ⊕ (⊕(Zk\{0k})/Z2C(X2) oα̂ Z), where X2 = {±n}. By
the same analysis as Case 1, we obtain sr(C0(Zk) oα̂ Z) = 1.

Case 3: k = 2 and α is the permutation of T2. By the duality,

〈α1(z, w), (s, t)〉 = wszt = 〈(z, w), (t, s)〉 = 〈(z, w), α̂1(s, t)〉
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for z, w ∈ T2 and s, t ∈ Z. Then we have the following orbit decomposition:

Z2 = (tn∈Z{n, n}) t (ts 6=t∈Z{s, t}).

Thus, we have C0(Z2) oα̂ Z = (⊕ZC∗(Z)) ⊕ (⊕s 6=t∈ZC(X2) oα̂ Z), where X2 =
{s, t}. By the same analysis as Case 1, we obtain sr(C(X2) oα̂ Z) = 1. Hence,
sr(C0(Z2) oα̂ Z) = 1 follows.

Case 4: k ≥ 2 and α is a finite composition of the permutations and the
reflections of each direct factor T of Tk. In this case, αn

1 = 1 for some n ≥ 2. For
example, if α is given by α1(z, w) = (w, z̄) for z, w ∈ T, then α4

1 = 1. By the duality,
〈α1(z, w), (s, t)〉 = 〈(w, z̄), (s, t)〉 = wsz−t = 〈(z, w), (−t, s)〉 = 〈(z, w), α̂1(s, t)〉.
Therefore, α̂4

1 = 1 on Z2. When α̂n
1 = 1 on Zk, we consider the decomposition:

Zk = F t (Zk \ F ), where the subset F consists of all fixed points of Zk under
α̂. Then we have C0(Zk) oα̂ Z = (⊕F C∗(Z))⊕ (⊕(Zk\F )/Zn

C(Xn) o Z), where Xn

means an orbit by α̂ consisting of n points in Zk \F , and (Zk \F )/Zn = (Zk \F )/Z
means the orbit space of Zk \ F under α̂. Moreover, as in the Case 1, we have the
following exact sequence:

0→ S(C(Xn) o Zn)→ C(Xn) o Z→ C(Xn) o Zn → 0

and C(Xn) o Zn
∼= Mn(C). Furthermore, by the six-term exact sequence,

0 −−−−→ K0(C(Xn) oα̂ Z) −−−−→ Z

∂

x y
0 ←−−−− K1(C(Xn) oα̂ Z) ←−−−− Z.

Hence, the index map ∂ is zero. Since sr(SMn(C)) = 1 and sr(Mn(C)) = 1 by
[13, Theorem 6.1], we have sr(C(Xn) o Z) = 1 by [7] or [9]. Therefore, we obtain
sr(C0(Zk) oα̂ Z) = 1.

Case 5: the action α is given by α1(z, w) 7→ (z, zw) for z, w ∈ T. By the duality,

〈α1(z, w), (s, t)〉 = 〈(z, zw), (s, t)〉 = (z)s(zw)t

= 〈(z, w), (s + t, t)〉 = 〈(z, w), α̂1(s, t)〉.

Thus, we consider the decomposition: Z2 = (Z× {0}) t (Z× (Z \ {0})). Then

C0(Z× {0}) oα̂ Z ∼= C0(Z)⊗ C∗(Z) ∼= C0(Z× T),
C0(Z× (Z \ {0})) oα̂ Z ∼= ⊕t∈Z\{0}C0(Z× {t}) oα̂ Z ∼= ⊕Z\{0}K.

Since sr(C0(Z× T)) = 1 and sr(K) = 1 ([13]), we obtain sr(C0(Z2) oα̂ Z) = 1.
Case 6: the action α is given by α1(z1, z2, z3) 7→ (z1, z1z2, z1z2z3) for z1, z2, z3 ∈

T. By the duality,

〈α1(z1, z2, z3), (s1, s2, s3)〉 = zs1
1 (z1z2)s2(z1z2z3)s3

= 〈(z1, z2, z3), (s1 + s2 + s3, s2 + s3, s3)〉
= 〈(z1, z2, z3), α̂1(s1, s2, s3)〉.
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Thus, Z3 = (Z× {0} × {0}) t (Z× (Z \ {0})× {0}) t (Z2 × (Z \ {0})), and

C0(Z× {0} × {0}) oα̂ Z ∼= C0(Z)⊗ C∗(Z) ∼= C0(Z× T),
C0(Z× (Z \ {0})× {0}) oα̂ Z ∼= ⊕Z\{0}C0(Z) oα̂ Z ∼= ⊕Z\{0}K,

C0(Z2 × (Z \ {0})) oα̂ Z ∼= ⊕Z2×(Z\{0})/ZC0(Z) oα̂ Z ∼= ⊕Z2×(Z\{0})/ZK,

where Z2 × (Z \ {0})/Z means the orbit space of Z2 × (Z \ {0}) by α̂. Therefore,
we deduce sr(C0(Z3) oα̂ Z) = 1.

The general case: any action α of Z on Tk is a finite composition of the re-
flections, the permutations and the similar actions as in Cases 5 and 6, and the
direct sum decomposition of C0(Zk) oα̂ Z is obtained as the above cases. In fact,
we consider the decomposition: Zk = F t (tn∈Z+Pn) t S, where F consists of all
fixed points of Zk under α̂, and any point of Pn has the period n under α̂, and α̂
on S is free. Note that those subsets F, Pn, S correspond to the cases, where the
stabilizers of points of Zk are either Z, Zn or {0} respectively. Then

C0(F ) oα̂ Z ∼= C0(F )⊗ C∗(Z) ∼= C0(F × T),
C0(Pn) oα̂ Z ∼= ⊕Pn/Zn

C(Xn) oα̂ Z,

C0(S) oα̂ Z ∼= ⊕S/ZC0(Z) oα̂ Z ∼= ⊕S/ZK,

where Pn/Zn = Pn/Z, S/Z are the orbit spaces of Pn, S by α̂ respectively, and
Xn is an orbit by α̂ consisting of n points in Pn. As in the Case 4, we obtain
sr(C(Xn) oα̂ Z) = 1. Therefore, we obtain sr(C0(Zn) oα̂ Z) = 1.

To estimate the connected stable rank of C∗(Tk oαZ), we use the P-V sequence:

K0(C∗(Tk)) −−−−→ K0(C∗(Tk)) −−−−→ K0(C∗(Tk) o Z)x y
K1(C∗(Tk) o Z) ←−−−− K1(C∗(Tk)) ←−−−− K0(C∗(Tk)).

Since K0(C∗(Tk)) ∼= K0(C0(Zk)) ∼= ⊕ZkZ and K1(C∗(Tk)) ∼= K1(C0(Zk)) ∼= 0, it
follows that K1(C∗(Tk)oZ) ∼= ⊕ZkZ. By [4, Corollary 1.6], we obtain csr(C∗(Tk oα

Z)) ≥ 2. On the other hand, since we have proved sr(C∗(Tk oα Z)) = 1 above, the
conclusion follows from (F1). �

Corollary 1.4. For a semi-direct product Tn oα Zk, we have

sr(C∗(Tn oα Zk)) = 1.

Proof. Note that C∗(Tn oα Zk) ∼= C0(Zn) oα̂ Zk and the following exact sequence:

0→ C0(R)⊗ (C0(Zn) oα̂ Zk)→ C0(Zn) oα̂ Z→ C0(Zn) oα̂ Zk → 0.

Then use Theorem 1.3 and (F3). �
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We say that a connected amenable Lie group G is linearizable if it is isomor-
phic to a semi-direct product N o K of a simply connected solvable Lie group N
by a compact connected Lie group K. This is reasonable from the definition for
connected solvable Lie groups to be linearlizable (cf. Theorem 1.2). See also [3] for
the structure of amenable locally compact groups and their group C∗-algebras.

Theorem 1.5. Let G be a linearizable connected amenable Lie group and G oα Z
a semi-direct product of G by Z. If G is noncompact, then

sr(C∗(G oα Z)) ≥ 2.

Proof. The line of the proof is the same as that of Theorem 1.2. Note that

C∗(G oα Z) ∼= C∗(G) oα Z ∼= (C∗(N) o K) oα Z.

Since K is compact, we can use the equivaliant K-theory for computing K-groups as
given in the proof of Theorem 1.2 by replacing the torus Tk with K. Furthermore,
since C∗(K) is isomorphic to the direct sum ⊕λ∈K∧Mnλ

(C) where K∧ is the unitary
dual of irreducible unitary representations of K up to unitary equivalence and nλ

is the dimension of λ. Therefore,

K0(C∗(K)) ∼= K0(⊕λ∈K∧Mnλ
(C)) ∼= ⊕K∧Z and

K1(C∗(K)) ∼= K1(⊕λ∈K∧Mnλ
(C)) ∼= ⊕K∧0 ∼= 0.

�

Corollary 1.6. Let G be a noncompact, linearizable connected amenable Lie group.
If sr(C∗(G)) = 1, then

sr(C∗(G oα Z)) = 2 = sr(C∗(G)) + 1.

Proof. Use Theorem 1.5 and (F4). �

Remark. This consequence should be interesting. See [23], [24], [17] and [22] for
G such that sr(C∗(G)) = 1.

Moreover, we obtain

Theorem 1.7. If K is a compact Lie group, then

sr(C∗(K oα Z)) = 1.

Moreover, we have csr(C∗(K oα Z)) = 2. In addition, sr(C∗(K oα Zk)) = 1, but

csr(C∗(K oα Zk)) = 1.
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Proof. The line of the proof for sr(C∗(K oα Z)) = 1 is the same as the general case
in the proof of Theorem 1.3. Note that

C∗(K oα Z) ∼= C∗(K) oα Z
∼= (⊕λ∈K∧Mnλ

(C)) oα̂ Z ∼= Γ0(K∧, {Mnλ
(C)}λ∈K∧) oα̂ Z,

where the dual group K∧ is discrete since K is compact, and the last crossed product
by Z involves Γ0(K∧, {Mnλ

(C)}λ∈K∧) the C∗-algebra of a continuous field on K∧

with fibers Mnλ
(C) (cf. [3] for C∗-algebras of continuous fields). Furthermore, this

crossed product is decomposed into the following direct sum:

Γ0(F, {Mnλ
(C)}λ∈F ) oα̂ Z

⊕ (⊕n∈Z+Γ0(Pn, {Mnλ
(C)}λ∈Pn

) oα̂ Z)
⊕ (⊕S/ZΓ0(Z, {Mnλ

(C)}λ∈Z) oα̂ Z),

where F is the set of all fixed points in K∧ under α̂, and Pn is the set of all points
with period n under α̂, and S is the set of all points with no period under α̂ so that
α̂ is free on S so that S = tZ a disjoint union of copies of Z by orbit decomposition,
and those crossed products involve the C∗-algebras of continuous fields on F , Pn,
Z with fibers Mnλ

(C) respectively. Moreover, we have

Γ0(F, {Mnλ
(C)}λ∈F ) oα̂ Z ∼= (⊕λ∈F Mnλ

(C))⊗ C(T),
Γ0(Pn, {Mnλ

(C)}λ∈Pn) oα̂ Z ∼= Mnλ
(C)⊗ (⊕Pn/ZC(Xn) oα̂ Z),

Γ0(Z, {Mnλ
(C)}λ∈Z) oα̂ Z ∼= Mnλ

(C)⊗ C0(Z) oα̂ Z ∼= Mnλ
(C)⊗K,

where note that the dimension nλ is the same for λ in an orbit under α̂ by definition
of the action α̂.

Since K1(C∗(K) o Z) ∼= ⊕K∧Z by using the P-V sequence as given in the proof
of Theorem 1.3, we obtain csr(C∗(K)oZ) ≥ 2 by [4, Corollary 1.6]. Then use (F1).
See also the proof of Corollary 1.4 for sr(C∗(K oα Zk)) = 1.

By [14, Theorem 2.10] it follows from sr(C∗(K oα Zk)) = 1 that

GL1(C∗(K oα Zk))/GL1(C∗(K oα Zk))0 ∼= K1(C∗(K oα Zk)).

Also, we have csr(C∗(K oα Zk)) ≤ 2 by (F1). By using the similar analysis above,
C∗(K oα Zk) is decomposed into a direct sum with the following direct summands:

Γ0(F, {Mnλ
(C)}λ∈F ) oα̂ Zk

∼= (⊕λ∈F Mnλ
(C))⊗ C∗(Zk),

Γ0(Ql, {Mnλ
(C)}λ∈Ql

) oα̂ Zk
∼= Mnλ

(C)⊗ (⊕Ql/Zk
C(Yl) oα̂ Zk),

where F is the set of all fixed points in K∧ under α̂, and for some 0 ≤ l < k,
Ql is the set of all points such that their orbits Yl are homeomorphic to Zk/Zl.
Furthermore, the imprimitivity theorem ([5]) implies

C(Yl) oα̂ Zk = C(Zk/Zl) oα̂ Zk

∼= C∗(Zl)⊗K(l2(Zk/Zl)) = C(Zl)⊗Mk/l(C),
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where K(l2(Zk/Zl)) means the C∗-algebra of compact operators on the Hilbert
space l2(Zk/Zl) ∼= Ck/l. Note that the dual group Z∧s ∼= Zs for s ∈ N. Therefore,
the K1-group of C∗(K oα Zk) is decomposed into a direct sum with the following
direct summands:

K1((⊕λ∈F Mnλ
(C))⊗ C∗(Zk)) ∼= ⊕λ∈F K1(Mnλ

(C)⊗ C(Zk)) ∼= 0,

K1(Mnλ
(C)⊗ (⊕Ql/Zk

C(Zl)⊗Mk/l(C))) ∼= ⊕Ql/Zk
K1(C(Zl)⊗Mk/l(C)) ∼= 0.

Thus, K1(C∗(K oα Zk)) is trivial. Hence we conclude csr(C∗(K oα Zk)) = 1. �

Corollary 1.8. If K is a compact Lie group, then

sr(C∗(K oα Z)) = 1 = sr(C∗(K)), csr(C∗(K oα Z)) = csr(C∗(K)) + 1,

sr(C∗(K oα Zk)) = 1 = sr(C∗(K)), csr(C∗(K oα Zk)) = 1 = csr(C∗(K)).

Remark. This consequence should be interesting.

What’s more, we first consider the case of semi-direct products of amenable
locally compact groups as follows:

Proposition 1.9. Let G, H be amenable locally compact groups. Then

sr(C∗(G o H)) ≥ sr(C∗(H)).

Thus, if sr(C∗(H)) ≥ 2, then sr(C∗(G o H)) ≥ 2. In particular, if H = Zk, then

sr(C∗(G o Zk)) ≥ [k/2] + 1.

Proof. Note that C∗(G o H) ∼= C∗(G) o H, and the quotient: C∗(G) o H →
C∗(H), which is deduced from that the trivial representation of C∗(G) is closed
in the spectrum of C∗(G), and is stable under the action of H. Hence, by (F3)
we obtain sr(C∗(G o H)) ≥ sr(C∗(H)). On the other hand, C∗(Zk) ∼= C(Tk) and
sr(C(Tk)) = [k/2] + 1 by (F2). Hence, sr(C∗(G o Zk)) ≥ [k/2] + 1. �

Remark. Note that sr(C∗(Z)) = sr(C(T)) = 1. Therefore, the proofs of Theorems
1.1, 1.2 and 1.5 are more complicated than that of this proposition.

We next consider the case of semi-direct products G o H of amenable locally
compact groups G by non-compact connected semi-simple Lie groups H. Note that
if the quotient of a connected Lie group by the radical, that is, the maximal normal
solvable Lie subgroup is compact, then the Lie group is amenable. (cf. [3, Section
18.3]). For H a non-compact connected semi-simple Lie group, let r(H) denote the
real rank of H, which is defined to be the real dimension of A for the Iwasawa
decomposition H = KAN . Let C∗

r (G o H) be the reduced group C∗-algebra of
G o H (cf. [16]). Since H is non-amenable, C∗

r (G o H) 6= C∗(G o H) (cf. [11]).
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Proposition 1.10. Let G be an amenable locally compact group and H a non-
compact connected semi-simple Lie group. Then

sr(C∗
r (G o H)) ≥ C∗

r (H).

If r(H) ≥ 2, then sr(C∗
r (G o H)) ≥ 2 and, in addition, sr(C∗(G o H)) ≥ 2.

Proof. Let C∗(G o H) be the full group C∗-algebra of G o H. Then C∗(G o H) ∼=
C∗(G) o H and C∗

r (G o H) ∼= C∗(G) or H the reduced crossed product of C∗(G)
by H. Moreover, since the trivial representation of G is fixed under the action of
H, we have the following diagram:

C∗(G) o H −−−−→ C∗(H) −−−−→ 0,y y
C∗(G) or H −−−−→ C∗

r (H) −−−−→ 0.

Then use (F3). By [16], if r(H) ≥ 2, then sr(C∗
r (H)) = 2. Therefore, we obtain the

second claim by (F3). �

Remark. For example, we may take SLn(R) for n ≥ 3 as H in the statement (cf.
[16]). Note that r(SL2(R)) = 1. In this case, we know that

sr(C∗
r (R2 o SL2(R))) = 1, sr(C∗

r ((R2 × R) o SL2(R))) = 2,

where the actions of SL2(R) on R2 are the matrix multiplication, and the action
on R is trivial (see [22]).
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