• Title/Summary/Keyword: Lebesgue measure

Search Result 33, Processing Time 0.032 seconds

STABILITY OF PEXIDERIZED JENSEN AND JENSEN TYPE FUNCTIONAL EQUATIONS ON RESTRICTED DOMAINS

  • Choi, Chang-Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.801-813
    • /
    • 2019
  • In this paper, using the Baire category theorem we investigate the Hyers-Ulam stability problem of pexiderized Jensen functional equation $$2f(\frac{x+y}{2})-g(x)-h(y)=0$$ and pexiderized Jensen type functional equations $$f(x+y)+g(x-y)-2h(x)=0,\\f(x+y)-g(x-y)-2h(y)=0$$ on a set of Lebesgue measure zero. As a consequence, we obtain asymptotic behaviors of the functional equations.

A MEASURE ZERO STABILITY OF A FUNCTIONAL EQUATION ASSOCIATED WITH INNER PRODUCT SPACE

  • Chun, Jaeyoung;Rassias, John Michael
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.697-711
    • /
    • 2017
  • Let X, Y be real normed vector spaces. We exhibit all the solutions $f:X{\rightarrow}Y$ of the functional equation f(rx + sy) + rsf(x - y) = rf(x) + sf(y) for all $x,y{\in}X$, where r, s are nonzero real numbers satisfying r + s = 1. In particular, if Y is a Banach space, we investigate the Hyers-Ulam stability problem of the equation. We also investigate the Hyers-Ulam stability problem on a restricted domain of the following form ${\Omega}{\cap}\{(x,y){\in}X^2:{\parallel}x{\parallel}+{\parallel}y{\parallel}{\geq}d\}$, where ${\Omega}$ is a rotation of $H{\times}H{\subset}X^2$ and $H^c$ is of the first category. As a consequence, we obtain a measure zero Hyers-Ulam stability of the above equation when $f:\mathbb{R}{\rightarrow}Y$.

COMPARISON THEOREMS FOR THE VOLUMES OF TUBES ABOUT METRIC BALLS IN CAT(𝜿)-SPACES

  • Lee, Doohann;Kim, Yong-Il
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.457-467
    • /
    • 2011
  • In this paper, we establish some comparison theorems about volumes of tubes in metric spaces with nonpositive curvature. First we compare the Hausdorff measure of tube about a metric ball contained in an (n-1)-dimensional totally geodesic subspace of an n-dimensional locally compact, geodesically complete Hadamard space with Lebesgue measure of its corresponding tube in Euclidean space ${\mathbb{R}}^n$, and then develop the result to the case of an m-dimensional totally geodesic subspace for 1 < m < n with an additional condition. Also, we estimate the Hausdorff measure of the tube about a shortest curve in a metric space of curvature bounded above and below.

A NOTE ON THE GENERALIZED HEAT CONTENT FOR LÉVY PROCESSES

  • Cygan, Wojciech;Grzywny, Tomasz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1463-1481
    • /
    • 2018
  • Let $X=\{X_t\}_{t{\geq}0}$ be a $L{\acute{e}}vy$ process in ${\mathbb{R}}^d$ and ${\Omega}$ be an open subset of ${\mathbb{R}}^d$ with finite Lebesgue measure. The quantity $H_{\Omega}(t)={\int_{\Omega}}{\mathbb{P}}^x(X_t{\in}{\Omega})$ dx is called the heat content. In this article we consider its generalized version $H^{\mu}_g(t)={\int_{\mathbb{R}^d}}{\mathbb{E}^xg(X_t){\mu}(dx)$, where g is a bounded function and ${\mu}$ a finite Borel measure. We study its asymptotic behaviour at zero for various classes of $L{\acute{e}}vy$ processes.

COMPOSITION OPERATORS ON THE PRIVALOV SPACES OF THE UNIT BALL OF ℂn

  • UEKI SEI-ICHIRO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.111-127
    • /
    • 2005
  • Let B and S be the unit ball and the unit sphere in $\mathbb{C}^n$, respectively. Let ${\sigma}$ be the normalized Lebesgue measure on S. Define the Privalov spaces $N^P(B)\;(1\;<\;p\;<\;{\infty})$ by $$N^P(B)\;=\;\{\;f\;{\in}\;H(B) : \sup_{0 where H(B) is the space of all holomorphic functions in B. Let ${\varphi}$ be a holomorphic self-map of B. Let ${\mu}$ denote the pull-back measure ${\sigma}o({\varphi}^{\ast})^{-1}$. In this paper, we prove that the composition operator $C_{\varphi}$ is metrically bounded on $N^P$(B) if and only if ${\mu}(S(\zeta,\delta)){\le}C{\delta}^n$ for some constant C and $C_{\varphi}$ is metrically compact on $N^P(B)$ if and only if ${\mu}(S(\zeta,\delta))=o({\delta}^n)$ as ${\delta}\;{\downarrow}\;0$ uniformly in ${\zeta}\;\in\;S. Our results are an analogous results for Mac Cluer's Carleson-measure criterion for the boundedness or compactness of $C_{\varphi}$ on the Hardy spaces $H^P(B)$.

LITTLE HANKEL OPERATORS ON WEIGHTED BLOCH SPACES IN Cn

  • Choi, Ki-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.469-479
    • /
    • 2003
  • Let B be the open unit ball in $C^{n}$ and ${\mu}_{q}$(q > -1) the Lebesgue measure such that ${\mu}_{q}$(B) = 1. Let ${L_{a,q}}^2$ be the subspace of ${L^2(B,D{\mu}_q)$ consisting of analytic functions, and let $\overline{{L_{a,q}}^2}$ be the subspace of ${L^2(B,D{\mu}_q)$) consisting of conjugate analytic functions. Let $\bar{P}$ be the orthogonal projection from ${L^2(B,D{\mu}_q)$ into $\overline{{L_{a,q}}^2}$. The little Hankel operator ${h_{\varphi}}^{q}\;:\;{L_{a,q}}^2\;{\rightarrow}\;{\overline}{{L_{a,q}}^2}$ is defined by ${h_{\varphi}}^{q}(\cdot)\;=\;{\bar{P}}({\varphi}{\cdot})$. In this paper, we will find the necessary and sufficient condition that the little Hankel operator ${h_{\varphi}}^{q}$ is bounded(or compact).

Entropy and information energy arithmetic operations for fuzzy numbers

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.754-758
    • /
    • 2005
  • There have been several tipical methods being used tomeasure the fuzziness (entropy) of fuzzy sets. Pedrycz is the original motivation of this paper. Recently, Wang and Chiu [FSS103(1999) 443-455] and Pedrycz [FSS 64(1994) 21-30] showed the relationship(addition, subtraction, multiplication) between the entropies of the resultant fuzzy number and the original fuzzy numbers of same type. In this paper, using Lebesgue-Stieltjes integral, we generalize results of Wang and Chiu [FSS 103(1999) 443-455] concerning entropy arithmetic operations without the condition of same types of fuzzy numbers. And using this results and trade-off relationship between information energy and entropy, we study more properties of information energy of fuzzy numbers.

On the asymptotic-norming property in lebesgue-bochner function spaces

  • Cho, Sung-Jin;Lee, Byung-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.227-232
    • /
    • 1992
  • In this paper we prove that if (.ohm., .SIGMA., .mu.) is a non-purely atomic measure space and X is strictly convex, then X has the asymptotic-norming property II if and only if $L_{p}$ (X, .mu.), 1 < p < .inf., has the asymptotic-norming property II. And we prove that if $X^{*}$ is an Asplund space and strictly convex, then for any p, 1 < p < .inf., $X^{*}$ has the .omega.$^{*}$-ANP-II if and only if $L_{p}$ ( $X^{*}$, .mu.) has the .omega.$^{*}$-ANP-II.*/-ANP-II.

  • PDF

BOUNDED FUNCTION ON WHICH INFINITE ITERATIONS OF WEIGHTED BEREZIN TRANSFORM EXIST

  • Jaesung Lee
    • Korean Journal of Mathematics
    • /
    • v.31 no.3
    • /
    • pp.305-311
    • /
    • 2023
  • We exhibit some properties of the weighted Berezin transform Tαf on L(Bn) and on L1(Bn). As the main result, we prove that if f ∈ L(Bn) with limk→∞ Tkαf exists, then there exist unique M-harmonic function g and $h{\in}{\bar{(I-T_{\alpha})L^{\infty}(B_n)}}$ such that f = g + h. We also show that of the norm of weighted Berezin operator Tα on L1(Bn, ν) converges to 1 as α tends to infinity, where ν is an ordinary Lebesgue measure.

SOME PROPERTIES OF THE BEREZIN TRANSFORM IN THE BIDISC

  • Lee, Jaesung
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.779-787
    • /
    • 2017
  • Let m be the Lebesgue measure on ${\mathbb{C}}$ normalized to $m(D)=1,{\mu}$ be an invariant measure on D defined by $d_{\mu}(z)=(1-{\mid}z{\mid}^2)^{-2}dm(z)$. For $f{\in}L^1(D^n,m{\times}{\cdots}{\times}m)$, Bf the Berezin transform of f is defined by, $$(Bf)(z_1,{\ldots},z_n)={\displaystyle\smashmargin{2}{\int\nolimits_D}{\cdots}{\int\nolimits_D}}f({\varphi}_{z_1}(x_1),{\ldots},{\varphi}_{z_n}(x_n))dm(x_1){\cdots}dm(x_n)$$. We prove that if $f{\in}L^1(D^2,{\mu}{\times}{\mu})$ is radial and satisfies ${\int}{\int_{D^2}}fd{\mu}{\times}d{\mu}=0$, then for every bounded radial function ${\ell}$ on $D^2$ we have $$\lim_{n{\rightarrow}{\infty}}{\displaystyle\smashmargin{2}{\int\int\nolimits_{D^2}}}(B^nf)(z,w){\ell}(z,w)d{\mu}(z)d{\mu}(w)=0$$. Then, using the above property we prove n-harmonicity of bounded function which is invariant under the Berezin transform. And we show the same results for the weighted the Berezin transform in the polydisc.