STABILITY OF PEXIDERIZED JENSEN AND JENSEN TYPE FUNCTIONAL EQUATIONS ON RESTRICTED DOMAINS

Chang-Kwon Choi

Abstract

In this paper, using the Baire category theorem we investigate the Hyers-Ulam stability problem of pexiderized Jensen functional

 equation$$
2 f\left(\frac{x+y}{2}\right)-g(x)-h(y)=0
$$

and pexiderized Jensen type functional equations

$$
\begin{aligned}
& f(x+y)+g(x-y)-2 h(x)=0 \\
& f(x+y)-g(x-y)-2 h(y)=0
\end{aligned}
$$

on a set of Lebesgue measure zero. As a consequence, we obtain asymptotic behaviors of the functional equations.

1. Introduction

Throughout the paper, we denote by \mathbb{R}, X and Y be the set of real numbers, a real normed space and a real Banach space, respectively, $d>0$ and $\epsilon \geq 0$ be fixed. A mapping $f: X \rightarrow Y$ is called the Jensen functional equation

$$
\begin{equation*}
2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)=0 \tag{1.1}
\end{equation*}
$$

for all $x, y \in X$. A mapping $f: X \rightarrow Y$ is called the Jensen type functional equation if f satisfies one of the functional equations

$$
\begin{align*}
& f(x+y)+f(x-y)-2 f(x)=0, \tag{1.2}\\
& f(x+y)-f(x-y)-2 f(y)=0 \tag{1.3}
\end{align*}
$$

for all $x, y \in X$. A mapping $f: X \rightarrow Y$ is called an additive function if f satisfies

$$
f(x+y)-f(x)-f(y)=0
$$

Received June 26, 2018; Revised January 13, 2019; Accepted February 7, 2019.
2010 Mathematics Subject Classification. 39B82.
Key words and phrases. Baire category theorem, first caetgory, second category, HyersUlam stability, pexiderized Jensen functional equation, pexiderized Jensen type functional equation, restricted domain.
for all $x, y \in X$. The stability problems for functional equations have been originated by Ulam in 1940 (see [32]). One of the first assertions to be obtained is the following result, essentially due to Hyers [18] that gives an answer to the question of Ulam.

Theorem 1.1. Let $\epsilon>0$ be fixed. Suppose that $f: X \rightarrow Y$ satisfies the functional inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ satisfying

$$
\|f(x)-A(x)\| \leq \epsilon
$$

for all $x \in X$.
Among the numerous results on Ulam-Hyers stability theorem for functional equations (e.g. [4,18-21,25,27-31]) there are various interesting results which deal with the stability of functional equations in restricted domains ([1-3,5-17, $22,24,26,27]$). In particular, J. Chung ([9]) prove the Ulam-Hyers stability of the Jensen functional equation (1.1) and C.-K. Choi and B. Lee ([8]) prove the Ulam-Hyers stability of the Jensen type functional equations (1.2) and (1.3).

In this paper, generalizing the functional equations (1.1) $\sim(1.3)$ we consider the Ulam-Hyers stability of the pexiderized Jensen functional equation

$$
\begin{equation*}
2 f\left(\frac{x+y}{2}\right)-g(x)-h(y)=0 \tag{1.4}
\end{equation*}
$$

for all $x, y \in X$, where $f, g, h: X \rightarrow Y$, and the pexiderized Jensen type functional equations

$$
\begin{align*}
& f(x+y)+g(x-y)-2 h(x)=0 \tag{1.5}\\
& f(x+y)-g(x-y)-2 h(y)=0 \tag{1.6}
\end{align*}
$$

for all $x, y \in X$, where $f, g, h: X \rightarrow Y$ in restricted domains $\Omega \subset X \times X$ satisfying the condition (C):

Let $\left(\gamma_{j}, \lambda_{j}\right) \in \mathbb{R}^{2}, j=1,2, \ldots, r$, with $\gamma_{j}^{2}+\lambda_{j}^{2} \neq 0$ for all $j=1,2, \ldots, r$, be given.
(C) For any $p_{j}, q_{j} \in X, j=1,2, \ldots, r$, there exists $t \in X$ such that

$$
\left\{\left(p_{j}+\gamma_{j} t, q_{j}+\lambda_{j} t\right): j=1,2, \ldots, r\right\} \subset \Omega .
$$

Remark 1.2. Functional equation (1.3) has only zero solutions. (If $x=y=0$, then $f(0)=0$; if $x=y$, then $f(2 x)=2 f(x)$; if $y=-x$, then $-f(2 x)=2 f(x)$, whence $f(x)=0$.) The more so that (1.6) is just a case of (1.5) with g replaced by $-g$.

Secondly, using the Baire category theorem, we prove the stability of the functional equations (1.4) $\sim(1.6)$ on restricted domains of form $\mathcal{H}^{2} \cap\{(x, y) \in$
$\left.X^{2}:\|x\|+\|y\| \geq d\right\}$ with $d>0$, where \mathcal{H} is a subset of X such that \mathcal{H}^{c} is of the first category. Constructing a subset Ω_{d} of $\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y| \geq d\right\}$ of 2-dimensional Lebesgue measure zero satisfying the condition (C) we obtain measure zero stability problems of the functional equations $(1.4) \sim(1.6)$ when $X=\mathbb{R}$.

As consequences of the results we also prove that if $f, g, h: \mathbb{R} \rightarrow Y$ satisfy the asymptotic conditions

$$
\begin{aligned}
& \left\|2 f\left(\frac{x+y}{2}\right)-g(x)-h(y)\right\| \rightarrow 0 \\
& \|f(x+y)+g(x-y)-2 h(x)\| \rightarrow 0 \\
& \|f(x+y)-g(x-y)-2 h(y)\| \rightarrow 0
\end{aligned}
$$

as $|x|+|y| \rightarrow \infty$ only for (x, y) in a set of Lebesgue measure zero in \mathbb{R}.

2. Abstract approach

Throughout this section we assume that $\Omega \subset X \times X$ satisfies the conditions $\left(\mathrm{C}_{1}\right) \sim\left(\mathrm{C}_{6}\right)$: For given $(x, y) \in X$, there exists $t \in X$ such that
$\left(\mathrm{C}_{1}\right)\{(2 x+t, 2 y-t),(2 x-2 y+t, 2 y-t),(2 x+t,-2 x+2 y-t)$,

$$
(2 x-2 y+t,-2 x+2 y-t)\} \subset \Omega,
$$

$\left(\mathrm{C}_{2}\right)\{(x+y, t),(x, t),(y, x+t),(0, x+t)\} \subset \Omega$,
$\left(\mathrm{C}_{3}\right)\{(t, x+y),(t, x),(x+t, y), P(x+t, 0)\} \subset \Omega$,
$\left(\mathrm{C}_{4}\right)\left\{(x-t, y+t),(x-t, t),\left(\frac{1}{2} x-t,-\frac{1}{2} x+y+t\right),\left(\frac{1}{2} x-t,-\frac{1}{2} x+t\right)\right\} \subset \Omega$,
$\left(\mathrm{C}_{5}\right)\left\{(x+t,-y+t),(x+t, t),\left(\frac{1}{2} x+t,-\frac{1}{2} x-y+t\right),\left(\frac{1}{2} x+t, \frac{1}{2} x+t\right)\right\} \subset \Omega$,
$\left(\mathrm{C}_{6}\right)\{(x+y,-x+y+t),(x,-x+t),(y, y+t),(0, t)\} \subset \Omega$,
respectively. We prove the Ulam-Hyers stability of $(1.4) \sim(1.6)$ in Ω.
Theorem 2.1. Suppose that $f, g, h: X \rightarrow Y$ satisfies the functional inequality

$$
\begin{equation*}
\left\|2 f\left(\frac{x+y}{2}\right)-g(x)-h(y)\right\| \leq \epsilon \tag{2.1}
\end{equation*}
$$

for all $(x, y) \in \Omega$. Then there exists a unique additive function $A: X \rightarrow Y$ such that

$$
\begin{align*}
& \|f(x)-A(x)-f(0)\| \leq 2 \epsilon, \tag{2.2}\\
& \|g(x)-A(x)-g(0)\| \leq 4 \epsilon, \tag{2.3}\\
& \|h(x)-A(x)-h(0)\| \leq 4 \epsilon \tag{2.4}
\end{align*}
$$

for all $x \in X$.
Proof. Let $P(x, y)=2 f\left(\frac{x+y}{2}\right)-g(x)-h(y)$. Since Ω satisfies the condition (C_{1}), it follows from (2.1) that for given $x, y \in X$, there exists $t \in X$ such that

$$
\begin{equation*}
\|P(2 x+t, 2 y-t)\|=\| 2 f(x+y)-g(2 x+t)-h(2 y-t)) \| \leq \epsilon \tag{2.5}
\end{equation*}
$$

$$
\begin{aligned}
\|P(2 x-2 y+t, 2 y-t)\| & =\|2 f(x)-g(2 x-2 y+t)-h(2 y-t)\| \leq \epsilon, \\
\|P(2 x+t,-2 x+2 y-t)\| & =\|2 f(y)-g(2 x+t)-h(-2 x+2 y-t)\| \leq \epsilon,
\end{aligned}
$$

$$
\begin{align*}
& \|P(2 x-2 y+t,-2 x+2 y-t)\| \tag{2.6}\\
= & \|2 f(0)-g(2 x-2 y+t)-h(-2 x+2 y-t)\| \leq \epsilon .
\end{align*}
$$

Thus, using the triangle inequality we have

$$
\begin{align*}
& \|f(x+y)-f(x)-f(y)+f(0)\| \tag{2.7}\\
\leq & \| \frac{1}{2} P(2 x+t, 2 y-t)-\frac{1}{2} P(2 x-2 y+t, 2 y-t) \\
& -\frac{1}{2} P(2 x+t,-2 x+2 y-t)+\frac{1}{2} P(2 x-2 y+t,-2 x+2 y-t) \| \leq 2 \epsilon
\end{align*}
$$

for all $x, y \in X$. Since Ω satisfies the condition $\left(\mathrm{C}_{2}\right)$, it follows from (2.1) that for given $x, y \in X$, there exists $t \in X$ such that

$$
\begin{aligned}
\|P(x+y, t)\| & =\left\|2 f\left(\frac{x+y+t}{2}\right)-g(x+y)-h(t)\right\| \leq \epsilon, \\
\|P(x, t)\| & =\left\|2 f\left(\frac{x+t}{2}\right)-g(x)-h(t)\right\| \leq \epsilon, \\
\|P(y, x+t)\| & =\left\|2 f\left(\frac{x+y+t}{2}\right)-g(y)-h(x+t)\right\| \leq \epsilon, \\
\|P(0, x+t)\| & =\left\|2 f\left(\frac{x+t}{2}\right)-g(0)-h(x+t)\right\| \leq \epsilon .
\end{aligned}
$$

Thus, using the triangle inequality we have

$$
\begin{align*}
& \|g(x+y)-g(x)-g(y)+g(0)\| \tag{2.8}\\
\leq & \|P(x+y, t)-P(x, t)-P(y, x+t)+P(0, x+t)\| \leq 4 \epsilon
\end{align*}
$$

for all $x, y \in X$. Since Ω satisfies the condition (C_{3}), it follows from (2.1) that for given $x, y \in X$, there exists $t \in X$ such that

$$
\begin{aligned}
\|P(t, x+y)\| & =\left\|2 f\left(\frac{x+y+t}{2}\right)-g(t)-h(x+y)\right\| \leq \epsilon, \\
\|P(t, x)\| & =\left\|2 f\left(\frac{x+t}{2}\right)-g(t)-h(x)\right\| \leq \epsilon, \\
\|P(x+t, y)\| & =\left\|2 f\left(\frac{x+y+t}{2}\right)-g(x+t)-h(y)\right\| \leq \epsilon, \\
\|P(x+t, 0)\| & =\left\|2 f\left(\frac{x+t}{2}\right)-g(x+t)-h(0)\right\| \leq \epsilon .
\end{aligned}
$$

Thus, using the triangle inequality we have

$$
\begin{equation*}
\|h(x+y)-h(x)-h(y)+h(0)\| \tag{2.9}
\end{equation*}
$$

$$
\leq\|P(t, x+y)-P(t, x)-P(x+t, y)+P(x+t, 0)\| \leq 4 \epsilon
$$

for all $x, y \in X$. By Theorem 1.1 with (2.7) $\sim(2.9)$, there exist additive functions $A_{1}, A_{2}, A_{3}: X \rightarrow Y$ such that

$$
\begin{align*}
& \left\|f(x)-A_{1}(x)-f(0)\right\| \leq 2 \epsilon \tag{2.10}\\
& \left\|g(x)-A_{2}(x)-g(0)\right\| \leq 4 \epsilon \tag{2.11}\\
& \left\|h(x)-A_{3}(x)-h(0)\right\| \leq 4 \epsilon \tag{2.12}
\end{align*}
$$

for all $x \in X$. Replacing x by $2 x-2 y+t, y$ by $2 y$ in (2.8) and x by $-2 x+2 y-t$, y by $2 x$ in (2.9) we have

$$
\begin{align*}
& \|g(2 x+t)-g(2 x-2 y+t)-g(2 y)+g(0)\| \leq 4 \epsilon \tag{2.13}\\
& \|h(2 y-t)-h(-2 x+2 y-t)-h(2 x)+h(0)\| \leq 4 \epsilon \tag{2.14}
\end{align*}
$$

for all $x, y \in X$. Using the triangle inequality with (2.5), (2.6), (2.13) and (2.14) we have

$$
\begin{equation*}
\|2 f(x+y)-g(2 y)-h(2 x)-2 f(0)+g(0)+h(0)\| \leq 10 \epsilon \tag{2.15}
\end{equation*}
$$

for all $x, y \in X$. Replacing x by $x+y$ in (2.10), x by $2 y$ in (2.11) and x by $2 x$ in (2.12) we have

$$
\begin{align*}
& \left\|f(x+y)-A_{1}(x+y)-f(0)\right\| \leq 2 \epsilon, \tag{2.16}\\
& \left\|g(2 y)-A_{2}(2 y)-g(0)\right\| \leq 4 \epsilon \tag{2.17}\\
& \left\|h(2 x)-A_{3}(2 x)-h(0)\right\| \leq 4 \epsilon \tag{2.18}
\end{align*}
$$

for all $x, y \in X$. Using the triangle inequality with $(2.15) \sim(2.18)$ we have

$$
\begin{equation*}
\left\|2 A_{1}(x+y)-A_{2}(2 y)-A_{3}(2 x)\right\| \leq 22 \epsilon \tag{2.19}
\end{equation*}
$$

for all $x, y \in X$. Putting $y=0$ in (2.19) and using the additivity of A_{j}, $j=1,2,3$, we have $A_{1}=A_{2}$. Similarly, putting $x=0$ in (2.19) we have $A_{1}=A_{3}$. Thus, we have $A_{1}=A_{2}=A_{3}(:=A)$. Hence, there exists a unique additive function $A: X \rightarrow Y$ such that $(2.2) \sim(2.4)$ for all $x \in X$. This completes the proof.

Theorem 2.2. Suppose that $f, g, h: X \rightarrow Y$ satisfies the functional inequality

$$
\begin{equation*}
\|f(x+y)+g(x-y)-2 h(x)\| \leq \epsilon \tag{2.20}
\end{equation*}
$$

for all $(x, y) \in \Omega$. Then there exists a unique additive function $A: X \rightarrow Y$ such that

$$
\begin{align*}
& \|f(x)-A(x)-f(0)\| \leq 4 \epsilon \tag{2.21}\\
& \|g(x)-A(x)-g(0)\| \leq 4 \epsilon \tag{2.22}\\
& \|h(x)-A(x)-h(0)\| \leq 2 \epsilon \tag{2.23}
\end{align*}
$$

for all $x \in X$.

Proof. Let $Q(x, y)=f(x+y)+g(x-y)-2 h(x)$. Since Ω satisfies the condition $\left(\mathrm{C}_{4}\right)$, it follows from (2.20) that for given $x, y \in X$, there exists $t \in X$ such that

$$
\begin{align*}
\|Q(x-t, y+t)\| & =\|f(x+y)+g(x-y-2 t)-2 h(x-t)\| \leq \epsilon \tag{2.24}\\
\|Q(x-t, t)\| & =\|f(x)+g(x-2 t)-2 h(x-t)\| \leq \epsilon
\end{align*}
$$

$$
\left\|Q\left(\frac{1}{2} x-t,-\frac{1}{2} x+y+t\right)\right\|=\left\|f(y)+g(x-y-2 t)-2 h\left(\frac{1}{2} x-t\right)\right\| \leq \epsilon,
$$

$$
\begin{equation*}
\left\|Q\left(\frac{1}{2} x-t,-\frac{1}{2} x+t\right)\right\|=\left\|f(0)+g(x-2 t)-2 h\left(\frac{1}{2} x-t\right)\right\| \leq \epsilon \tag{2.25}
\end{equation*}
$$

Thus, using the triangle inequality we have

$$
\begin{align*}
& \|f(x+y)-f(x)-f(y)+f(0)\| \tag{2.26}\\
\leq & \| Q(x-t, y+t)-Q(x-t, t)-Q\left(\frac{1}{2} x-t,-\frac{1}{2} x+y+t\right) \\
& +Q\left(\frac{1}{2} x-t,-\frac{1}{2} x+t\right) \| \leq 4 \epsilon
\end{align*}
$$

for all $x, y \in X$. Since Ω satisfies the condition $\left(\mathrm{C}_{5}\right)$, it follows from (2.20) that for given $x, y \in X$, there exists $t \in X$ such that

$$
\begin{aligned}
\|Q(x+t,-y+t)\| & =\|f(x-y+2 t)+g(x+y)-2 h(x+t)\| \leq \epsilon, \\
\|Q(x+t, t)\| & =\|f(x+2 t)+g(x)-2 h(x+t)\| \leq \epsilon, \\
\left\|Q\left(\frac{1}{2} x+t,-\frac{1}{2} x-y+t\right)\right\| & =\left\|f(x-y+2 t)+g(y)-2 h\left(\frac{1}{2} x+t\right)\right\| \leq \epsilon, \\
\left\|Q\left(\frac{1}{2} x+t, \frac{1}{2} x+t\right)\right\| & =\left\|f(x+2 t)+g(0)-2 h\left(\frac{1}{2} x+t\right)\right\| \leq \epsilon
\end{aligned}
$$

Thus, using the triangle inequality we have

$$
\begin{align*}
& \quad\|g(x+y)-g(x)-g(y)+g(0)\| \tag{2.27}\\
& \leq \| Q(x+y,-y+t)-Q(x+t, t)-Q\left(\frac{1}{2} x+t,-\frac{1}{2} x-y+t\right) \\
& \quad+Q\left(\frac{1}{2} x+t, \frac{1}{2} x+t\right) \| \leq 4 \epsilon
\end{align*}
$$

for all $x, y \in X$. Since Ω satisfies the condition $\left(\mathrm{C}_{6}\right)$, it follows from (2.20) that for given $x, y \in X$, there exists $t \in X$ such that

$$
\begin{aligned}
\|Q(x+y,-x+y+t)\| & =\|f(2 y+t)+g(2 x-t)-2 h(x+y)\| \leq \epsilon, \\
\|Q(x,-x+t)\| & =\|f(t)+g(2 x-t)-2 h(x)\| \leq \epsilon, \\
\|Q(y, y+t)\| & =\|f(2 y+t)+g(-t)-2 h(y)\| \leq \epsilon, \\
\|Q(0, t)\| & =\|f(t)+g(-t)-2 h(0)\| \leq \epsilon .
\end{aligned}
$$

Thus, using the triangle inequality we have

$$
\begin{align*}
& \|h(x+y)-h(x)-h(y)+h(0)\| \tag{2.28}\\
\leq & \left\|\frac{1}{2} Q(x+y,-x+y+t)-\frac{1}{2} Q(x,-x+t)-\frac{1}{2} Q(y, y+t)+\frac{1}{2} Q(0, t)\right\| \\
\leq & 2 \epsilon
\end{align*}
$$

for all $x, y \in X$. By Theorem 1.1 with (2.26) $\sim(2.28)$, there exist additive functions $A_{1}, A_{2}, A_{3}: X \rightarrow Y$ such that

$$
\begin{align*}
\left\|f(x)-A_{1}(x)-f(0)\right\| & \leq 4 \epsilon \tag{2.29}\\
\left\|g(x)-A_{2}(x)-g(0)\right\| & \leq 4 \epsilon \tag{2.30}\\
\left\|h(x)-A_{3}(x)-h(0)\right\| & \leq 2 \epsilon \tag{2.31}
\end{align*}
$$

for all $x \in X$. Replacing x by $x-2 t, y$ by $-y$ in (2.27) and x by $\frac{1}{2} x-t, y$ by $\frac{1}{2} x$ in (2.28) we have

$$
\begin{align*}
& \|g(x-y-2 t)-g(x-2 t)-g(-y)+g(0)\| \leq 4 \epsilon \tag{2.32}\\
& \left\|h(x-t)-h\left(\frac{1}{2} x-t\right)-h\left(\frac{1}{2} x\right)+h(0)\right\| \leq 2 \epsilon \tag{2.33}
\end{align*}
$$

for all $x, y \in X$. Using the triangle inequality with (2.24), (2.25), (2.32) and (2.33) we have

$$
\begin{equation*}
\left\|f(x+y)+g(-y)-2 h\left(\frac{1}{2} x\right)-f(0)-g(0)+2 h(0)\right\| \leq 10 \epsilon \tag{2.34}
\end{equation*}
$$

for all $x, y \in X$. Replacing x by $x+y$ in (2.29), x by $-y$ in (2.30) and x by $\frac{1}{2} x$ in (2.31) we have

$$
\begin{align*}
& \left\|f(x+y)-A_{1}(x+y)-f(0)\right\| \leq 4 \epsilon \tag{2.35}\\
& \left\|g(-y)-A_{2}(-y)-g(0)\right\| \leq 4 \epsilon \tag{2.36}\\
& \left\|h\left(\frac{1}{2} x\right)-A_{3}\left(\frac{1}{2} x\right)-h(0)\right\| \leq 2 \epsilon \tag{2.37}
\end{align*}
$$

for all $x, y \in X$. Using the triangle inequality with $(2.34) \sim(2.37)$ we have

$$
\begin{equation*}
\left\|A_{1}(x+y)+A_{2}(-y)-2 A_{3}\left(\frac{1}{2} x\right)\right\| \leq 22 \epsilon \tag{2.38}
\end{equation*}
$$

for all $x, y \in X$. Putting $y=0$ in (2.38) and using the additivity of $A_{j}, j=$ $1,2,3$, we have $A_{1}=A_{3}$. Similarly, putting $x=0$ in (2.38) we have $A_{1}=A_{2}$. Thus, we have $A_{1}=A_{2}=A_{3}(:=A)$. Hence, there exists a unique additive function $A: X \rightarrow Y$ such that $(2.21) \sim(2.23)$ for all $x \in X$. This completes the proof.

Theorem 2.3. Suppose that $f, g, h: X \rightarrow Y$ satisfies the functional inequality

$$
\|f(x+y)-g(x-y)-2 h(y)\| \leq \epsilon
$$

for all $(x, y) \in \Omega$. Then there exists a unique additive function $A: X \rightarrow Y$ such that

$$
\begin{aligned}
& \|f(x)-A(x)-f(0)\| \leq 4 \epsilon, \\
& \|g(x)-A(x)-g(0)\| \leq 4 \epsilon, \\
& \|h(x)-A(x)-h(0)\| \leq 2 \epsilon
\end{aligned}
$$

for all $x \in X$.
It is obvious that the set $\left\{(x, y) \in X^{2}:\|x\|+\|y\| \geq d\right\}$ satisfies the condition $\left(\mathrm{C}_{1}\right) \sim\left(\mathrm{C}_{6}\right)$. Thus, as direct consequences of Theorem $2.1 \sim$ Theorem 2.3 we obtain the results following.
Corollary 2.4. Let $d>0$. Suppose that $f, g, h: X \rightarrow Y$ satisfies the functional inequality

$$
\left\|2 f\left(\frac{x+y}{2}\right)-g(x)-h(y)\right\| \leq \epsilon
$$

for all $(x, y) \in X$ with $\|x\|+\|y\| \geq d$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{aligned}
& \|f(x)-A(x)-f(0)\| \leq 2 \epsilon, \\
& \|g(x)-A(x)-g(0)\| \leq 4 \epsilon, \\
& \|h(x)-A(x)-h(0)\| \leq 4 \epsilon
\end{aligned}
$$

for all $x \in X$.
Corollary 2.5. Let $d>0$. Suppose that $f, g, h: X \rightarrow Y$ satisfies the functional inequality

$$
\|f(x+y)+g(x-y)-2 h(x)\| \leq \epsilon
$$

for all $(x, y) \in X$ with $\|x\|+\|y\| \geq d$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{aligned}
& \|f(x)-A(x)-f(0)\| \leq 4 \epsilon, \\
& \|g(x)-A(x)-g(0)\| \leq 4 \epsilon, \\
& \|h(x)-A(x)-h(0)\| \leq 2 \epsilon
\end{aligned}
$$

for all $x \in X$.
Corollary 2.6. Let $d>0$. Suppose that $f, g, h: X \rightarrow Y$ satisfies the functional inequality

$$
\|f(x+y)-g(x-y)-2 h(y)\| \leq \epsilon
$$

for all $(x, y) \in X$ with $\|x\|+\|y\| \geq d$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{aligned}
& \|f(x)-A(x)-f(0)\| \leq 4 \epsilon, \\
& \|g(x)-A(x)-g(0)\| \leq 4 \epsilon, \\
& \|h(x)-A(x)-h(0)\| \leq 2 \epsilon
\end{aligned}
$$

for all $x \in X$.

3. Main results

Throughout this section we assume that X is complete. By constructing subsets $\Omega \subset X \times X$ satisfying the three conditions $\left(\mathrm{C}_{1}\right) \sim\left(\mathrm{C}_{6}\right)$ we prove the Hyers-Ulam stability of the functional equations (1.4) $\sim(1.6)$ satisfied on restricted domains of form $\mathcal{H}^{2} \cap\left\{(x, y) \in X^{2}:\|x\|+\|y\| \geq d\right\}$ with $d>0$, where \mathcal{H} is a subset of X such that \mathcal{H}^{c} is of the first category. As a consequence we obtain a stability theorem of the functional equations on a set of Lebesgue measure zero when $X=\mathbb{R}$.

Recall that a subset K of a topological space E is said to be of the first category if K is a countable union of nowhere dense subsets of E, and otherwise it is said to be of the second category. As named Baire category theorem it is well known that every nonempty open subset of a compact Hausdorff space or a complete metric space is of the second category.

The proof of the following lemmas can be found in [15]. For the reader we give the proof.

Lemma 3.1. Let \mathcal{H} be a subset of X such that $\mathcal{H}^{c}:=X \backslash \mathcal{H}$ is of the first category. Then, for any countable subsets $U \subset X, \Gamma \subset \mathbb{R} \backslash\{0\}$ and $M>0$, there exists $t \in X$ with $\|t\| \geq M$ such that

$$
U+\Gamma t=\{u+\gamma t: u \in U, \gamma \in \Gamma\} \subset \mathcal{H} .
$$

From now on we identify \mathbb{R}^{2} with \mathbb{C}.
Lemma 3.2. Let $P=\left\{\left(p_{j}+\gamma_{j} t, q_{j}+\lambda_{j} t\right): j=1,2, \ldots, r\right\}$, where $p_{j}, q_{j}, t \in$ $X, \gamma_{j}, \lambda_{j} \in \mathbb{R}$ with $\gamma_{j}^{2}+\lambda_{j}^{2} \neq 0$ for all $j=1,2, \ldots, r$. Then there exists a $\theta \in[0,2 \pi)$ such that $e^{-i \theta} P:=\left\{\left(p_{j}^{\prime}+\gamma_{j}^{\prime} t, q_{j}^{\prime}+\lambda_{j}^{\prime} t\right): j=1,2, \ldots, r\right\}$ satisfies $\gamma_{j}^{\prime} \lambda_{j}^{\prime} \neq 0$ for all $j=1,2, \ldots, r$.
Lemma 3.3. Let \mathcal{H} be a subset of X such that \mathcal{H}^{c} is of the first category. Then there exists a $\theta \in[0,2 \pi)$ such that $\Omega_{\theta, d}:=\left(e^{i \theta} \mathcal{H}^{2}\right) \cap\left\{(x, y) \in X^{2}:\|x\|+\|y\| \geq\right.$ $d\}$ satisfies the conditions $\left(\mathrm{C}_{1}\right) \sim\left(\mathrm{C}_{6}\right)$ for all $d>0$.
Remark 3.4. The set \mathbb{R} of real numbers can be partitioned as follows:

$$
\mathbb{R}=\mathcal{K} \cup(\mathbb{R} \backslash \mathcal{K})
$$

where \mathcal{K} is of Lebesgue measure zero and $\mathbb{R} \backslash \mathcal{K}$ is of the first category [23, Theorem 1.6]. Thus, in view of Lemma 3.3, $\Omega_{d}:=\left(e^{i \theta} \mathcal{K}^{2}\right) \cap\left\{(x, y) \in \mathbb{R}^{2}\right.$: $|x|+|y| \geq d\}$ is of Lebesgue measure zero satisfying $\left(\mathrm{C}_{1}\right) \sim\left(\mathrm{C}_{6}\right)$.

Now, we obtain the following results.
Theorem 3.5. Suppose that $f, g, h: \mathbb{R} \rightarrow Y$ satisfies the functional inequality

$$
\left\|2 f\left(\frac{x+y}{2}\right)-g(x)-h(y)\right\| \leq \epsilon
$$

for all $(x, y) \in \Omega_{d}$. Then there exists a unique additive mapping $A: \mathbb{R} \rightarrow Y$ such that

$$
\|f(x)-A(x)-f(0)\| \leq 2 \epsilon,
$$

$$
\begin{aligned}
& \|g(x)-A(x)-g(0)\| \leq 4 \epsilon \\
& \|h(x)-A(x)-h(0)\| \leq 4 \epsilon
\end{aligned}
$$

for all $x \in \mathbb{R}$.
Theorem 3.6. Suppose that $f, g, h: \mathbb{R} \rightarrow Y$ satisfies the functional inequality

$$
\|f(x+y)+g(x-y)-2 h(x)\| \leq \epsilon
$$

for all $(x, y) \in \Omega_{d}$. Then there exists a unique additive mapping $A: \mathbb{R} \rightarrow Y$ such that

$$
\begin{aligned}
& \|f(x)-A(x)-f(0)\| \leq 4 \epsilon, \\
& \|g(x)-A(x)-g(0)\| \leq 4 \epsilon, \\
& \|h(x)-A(x)-h(0)\| \leq 2 \epsilon
\end{aligned}
$$

for all $x \in \mathbb{R}$.
Theorem 3.7. Suppose that $f, g, h: \mathbb{R} \rightarrow Y$ satisfies the functional inequality

$$
\|f(x+y)-g(x-y)-2 h(y)\| \leq \epsilon
$$

for all $(x, y) \in \Omega_{d}$. Then there exists a unique additive mapping $A: \mathbb{R} \rightarrow Y$ such that

$$
\begin{aligned}
& \|f(x)-A(x)-f(0)\| \leq 4 \epsilon, \\
& \|g(x)-A(x)-g(0)\| \leq 4 \epsilon, \\
& \|h(x)-A(x)-h(0)\| \leq 2 \epsilon
\end{aligned}
$$

for all $x \in \mathbb{R}$.
As a consequence of Theorem 3.5 we obtain the asymptotic behavior of f, g, h satisfying

$$
\begin{equation*}
\left\|2 f\left(\frac{x+y}{2}\right)-g(x)-h(y)\right\| \rightarrow 0 \tag{3.1}
\end{equation*}
$$

as $|x|+|y| \rightarrow \infty$ only for $(x, y) \in \Omega \subset \mathbb{R}^{2}$ with $m(\Omega)=0$.
Corollary 3.8. Suppose that $f, g, h: \mathbb{R} \rightarrow Y$ satisfies the condition (3.1). Then there exists a unique additive mapping $A: \mathbb{R} \rightarrow Y$ such that

$$
\begin{align*}
& f(x)=A(x)+f(0), \tag{3.2}\\
& g(x)=A(x)+g(0), \tag{3.3}\\
& h(x)=A(x)+h(0) \tag{3.4}
\end{align*}
$$

for all $x \in \mathbb{R}$.
Proof. The condition (3.1) implies that for each $n \in \mathbb{N}$, there exists $d_{n}>0$ such that

$$
\left\|2 f\left(\frac{x+y}{2}\right)-g(x)-h(y)\right\| \leq \frac{1}{n}
$$

for all $(x, y) \in \Omega_{d_{n}}$. By Theorem 3.5, there exists a unique additive mapping $A_{n}: \mathbb{R} \rightarrow Y$ such that

$$
\begin{align*}
& \left\|f(x)-A_{n}(x)-f(0)\right\| \leq \frac{2}{n} \tag{3.5}\\
& \left\|g(x)-A_{n}(x)-g(0)\right\| \leq \frac{4}{n} \tag{3.6}\\
& \left\|h(x)-A_{n}(x)-h(0)\right\| \leq \frac{4}{n} \tag{3.7}
\end{align*}
$$

for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Replacing n by $m \in \mathbb{N}$ in (3.5) we have

$$
\begin{equation*}
\left\|f(x)-A_{m}(x)-f(0)\right\| \leq \frac{2}{m} \tag{3.8}
\end{equation*}
$$

for all $m \in \mathbb{N}$ and $x \in \mathbb{R}$. Using the triangle inequality with (3.5) and (3.8) we have

$$
\begin{equation*}
\left\|A_{m}(x)-A_{n}(x)\right\| \leq \frac{2}{m}+\frac{2}{n} \leq 4 \tag{3.9}
\end{equation*}
$$

for all $m, n \in \mathbb{N}$ and $x \in \mathbb{R}$. From the additivity of A_{m}, A_{n}, it follows that $A_{m}=A_{n}$ for all $m, n \in \mathbb{N}$. Letting $n \rightarrow \infty$ in (3.9) we get (3.2). Similarly, replacing n by $m \in \mathbb{N}$ in (3.6) and (3.7), respectively, we have

$$
\begin{equation*}
\left\|A_{m}(x)-A_{n}(x)\right\| \leq \frac{4}{m}+\frac{4}{n} \leq 8 \tag{3.10}
\end{equation*}
$$

for all $m, n \in \mathbb{N}$ and $x \in \mathbb{R}$. From the additivity of A_{m}, A_{n}, it follows that $A_{m}=A_{n}$ for all $m, n \in \mathbb{N}$. Letting $n \rightarrow \infty$ in (3.10) we get (3.3) and (3.4). This completes the proof.

Similarly, using Theorem 3.6 and Theorem 3.7 we have the following.
Corollary 3.9. Suppose that $f, g, h: \mathbb{R} \rightarrow Y$ satisfies the condition

$$
\|f(x+y)+g(x-y)-2 h(x)\| \rightarrow 0
$$

as $|x|+|y| \rightarrow \infty$ only for $(x, y) \in \Omega \subset \mathbb{R}^{2}$ with $m(\Omega)=0$. Then there exists a unique additive mapping $A: \mathbb{R} \rightarrow Y$ such that

$$
\begin{aligned}
& f(x)=A(x)+f(0), \\
& g(x)=A(x)+g(0), \\
& h(x)=A(x)+h(0)
\end{aligned}
$$

for all $x \in \mathbb{R}$.
Corollary 3.10. Suppose that $f, g, h: \mathbb{R} \rightarrow Y$ satisfies the condition

$$
\|f(x+y)-g(x-y)-2 h(y)\| \rightarrow 0
$$

as $|x|+|y| \rightarrow \infty$ only for $(x, y) \in \Omega \subset \mathbb{R}^{2}$ with $m(\Omega)=0$. Then there exists a unique additive mapping $A: \mathbb{R} \rightarrow Y$ such that

$$
\begin{aligned}
& f(x)=A(x)+f(0), \\
& g(x)=A(x)+g(0),
\end{aligned}
$$

$$
h(x)=A(x)+h(0)
$$

for all $x \in \mathbb{R}$.

References

[1] A. Bahyrycz and J. Brzdȩk, On solutions of the d'Alembert equation on a restricted domain, Aequationes Math. 85 (2013), no. 1-2, 169-183.
[2] B. Batko, Stability of an alternative functional equation, J. Math. Anal. Appl. 339 (2008), no. 1, 303-311.
[3] J. Brzdȩk, On a method of proving the Hyers-Ulam stability of functional equations on restricted domains, Aust. J. Math. Anal. Appl. 6 (2009), no. 1, Art. 4, 10 pp.
[4] , On the quotient stability of a family of functional equations, Nonlinear Anal. 71 (2009), no. 10, 4396-4404.
[5] J. Brzdȩk, W. Fechner, M. S. Moslehian, and J. Sikorska, Recent developments of the conditional stability of the homomorphism equation, Banach J. Math. Anal. 9 (2015), no. 3, 278-326.
[6] J. Brzdȩk, D. Popa, I. Rasa, and B. Xu, Ulam Stability of Operators, Mathematical Analysis and Its Applications, Academic Press, London, 2018.
[7] J. Brzdȩk and J. Sikorska, A conditional exponential functional equation and its stability, Nonlinear Anal. 72 (2010), no. 6, 2923-2934.
[8] C.-K. Choi and B. Lee, Measure zero stability problem for Jensen type functional equations, Global J. Pure Appl. Math. 12 (2016), no. 4, 3673-3682.
[9] J. Chung, Stability of functional equations on restricted domains in a group and their asymptotic behaviors, Comput. Math. Appl. 60 (2010), no. 9, 2653-2665.
[10] , Stability of a conditional Cauchy equation on a set of measure zero, Aequationes Math. 87 (2014), no. 3, 391-400.
[11] _, On the Drygas functional equation in restricted domains, Aequationes Math. 90 (2016), no. 4, 799-808.
[12] J. Chung and C.-K. Choi, Asymptotic behaviors of alternative Jensen functional equations—revisited, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 19 (2012), no. 4, 409-421.
[13] J. Chung, D. Kim, and J. M. Rassias, Stability of Jensen-type functional equations on restricted domains in a group and their asymptotic behaviors, J. Appl. Math. 2012 (2012), Art. ID 691981, 12 pp.
[14] J. Chung and J. M. Rassias, Quadratic functional equations in a set of Lebesgue measure zero, J. Math. Anal. Appl. 419 (2014), no. 2, 1065-1075.
[15] _, On a measure zero stability problem of a cyclic equation, Bull. Aust. Math. Soc. 93 (2016), no. 2, 272-282.
[16] M. Fochi, An alternative functional equation on restricted domain, Aequationes Math. 70 (2005), no. 3, 201-212.
[17] R. Ger and J. Sikorska, On the Cauchy equation on spheres, Ann. Math. Sil. 11 (1997), 89-99.
[18] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.
[19] S.-M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3137-3143.
[20] , On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), no. 1, 126-137.
[21] , Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Optimization and Its Applications, 48, Springer, New York, 2011.
[22] M. Kuczma, Functional equations on restricted domains, Aequationes Math. 18 (1978), no. 1-2, 1-34.
[23] J. C. Oxtoby, Measure and Category, second edition, Graduate Texts in Mathematics, 2, Springer-Verlag, New York, 1980.
[24] S.-H. Park and C.-K. Choi, Measure zero stability problem for alternative Jensen functional equations, Global J. Pure Appl. Math. 13 (2017), no. 4, 1171-1182.
[25] J. M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl. 276 (2002), no. 2, 747-762.
[26] J. M. Rassias and M. J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl. 281 (2003), no. 2, 516-524.
[27] , Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math. 129 (2005), no. 7, 545-558.
[28] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
[29] J. Sikorska, On two conditional Pexider functional equations and their stabilities, Nonlinear Anal. 70 (2009), no. 7, 2673-2684.
[30] F. Skof, Sull'approssimazione delle applicazioni localmente δ-additive, Atii Accad. Sci.Torino Cl. Sci. Fis. Mat. Natur. 117 (1983), 377-389.
[31] _ Proprietá locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[32] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York, 1960.

Chang-Kwon Choi
Department of Mathematics and Liberal Education Institute
Kunsan National University
Gunsan 54150, Korea
Email address: ck38@kunsan.ac.kr

