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STABILITY OF PEXIDERIZED JENSEN AND JENSEN TYPE

FUNCTIONAL EQUATIONS ON RESTRICTED DOMAINS

Chang-Kwon Choi

Abstract. In this paper, using the Baire category theorem we investi-

gate the Hyers-Ulam stability problem of pexiderized Jensen functional
equation

2f

(
x+ y

2

)
− g(x) − h(y) = 0

and pexiderized Jensen type functional equations

f(x+ y) + g(x− y) − 2h(x) = 0,

f(x+ y) − g(x− y) − 2h(y) = 0

on a set of Lebesgue measure zero. As a consequence, we obtain asymp-

totic behaviors of the functional equations.

1. Introduction

Throughout the paper, we denote by R, X and Y be the set of real numbers,
a real normed space and a real Banach space, respectively, d > 0 and ε ≥ 0 be
fixed. A mapping f : X → Y is called the Jensen functional equation

(1.1) 2f

(
x+ y

2

)
− f(x)− f(y) = 0

for all x, y ∈ X. A mapping f : X → Y is called the Jensen type functional
equation if f satisfies one of the functional equations

f(x+ y) + f(x− y)− 2f(x) = 0,(1.2)

f(x+ y)− f(x− y)− 2f(y) = 0(1.3)

for all x, y ∈ X. A mapping f : X → Y is called an additive function if f
satisfies

f(x+ y)− f(x)− f(y) = 0
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for all x, y ∈ X. The stability problems for functional equations have been
originated by Ulam in 1940 (see [32]). One of the first assertions to be obtained
is the following result, essentially due to Hyers [18] that gives an answer to the
question of Ulam.

Theorem 1.1. Let ε > 0 be fixed. Suppose that f : X → Y satisfies the
functional inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε
for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y
satisfying

‖f(x)−A(x)‖ ≤ ε
for all x ∈ X.

Among the numerous results on Ulam-Hyers stability theorem for functional
equations (e.g. [4, 18–21, 25, 27–31]) there are various interesting results which
deal with the stability of functional equations in restricted domains ([1–3,5–17,
22, 24, 26, 27]). In particular, J. Chung ([9]) prove the Ulam-Hyers stability of
the Jensen functional equation (1.1) and C.-K. Choi and B. Lee ([8]) prove the
Ulam-Hyers stability of the Jensen type functional equations (1.2) and (1.3).

In this paper, generalizing the functional equations (1.1) ∼ (1.3) we consider
the Ulam-Hyers stability of the pexiderized Jensen functional equation

(1.4) 2f

(
x+ y

2

)
− g(x)− h(y) = 0

for all x, y ∈ X, where f, g, h : X → Y , and the pexiderized Jensen type
functional equations

f(x+ y) + g(x− y)− 2h(x) = 0,(1.5)

f(x+ y)− g(x− y)− 2h(y) = 0(1.6)

for all x, y ∈ X, where f, g, h : X → Y in restricted domains Ω ⊂ X × X
satisfying the condition (C):

Let (γj , λj) ∈ R2, j = 1, 2, . . . , r, with γ2j + λ2j 6= 0 for all j = 1, 2, . . . , r,

be given.

For any pj , qj ∈ X, j = 1, 2, . . . , r, there exists t ∈ X such that(C)

{(pj + γjt, qj + λjt) : j = 1, 2, . . . , r} ⊂ Ω.

Remark 1.2. Functional equation (1.3) has only zero solutions. (If x = y = 0,
then f(0) = 0; if x = y, then f(2x) = 2f(x); if y = −x, then −f(2x) = 2f(x),
whence f(x) = 0.) The more so that (1.6) is just a case of (1.5) with g replaced
by −g.

Secondly, using the Baire category theorem, we prove the stability of the
functional equations (1.4) ∼ (1.6) on restricted domains of form H2 ∩{(x, y) ∈
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X2 : ‖x‖ + ‖y‖ ≥ d} with d > 0, where H is a subset of X such that Hc is
of the first category. Constructing a subset Ωd of {(x, y) ∈ R2 : |x| + |y| ≥ d}
of 2-dimensional Lebesgue measure zero satisfying the condition (C) we obtain
measure zero stability problems of the functional equations (1.4) ∼ (1.6) when
X = R.

As consequences of the results we also prove that if f, g, h : R → Y satisfy
the asymptotic conditions∥∥∥∥2f

(
x+ y

2

)
− g(x)− h(y)

∥∥∥∥→ 0,

‖f(x+ y) + g(x− y)− 2h(x)‖ → 0,

‖f(x+ y)− g(x− y)− 2h(y)‖ → 0

as |x|+ |y| → ∞ only for (x, y) in a set of Lebesgue measure zero in R.

2. Abstract approach

Throughout this section we assume that Ω ⊂ X ×X satisfies the conditions
(C1) ∼ (C6): For given (x, y) ∈ X, there exists t ∈ X such that

(C1) {(2x+ t, 2y − t), (2x− 2y + t, 2y − t), (2x+ t,−2x+ 2y − t),
(2x− 2y + t,−2x+ 2y − t)} ⊂ Ω,

(C2) {(x+ y, t), (x, t), (y, x+ t), (0, x+ t)} ⊂ Ω,

(C3) {(t, x+ y), (t, x), (x+ t, y), P (x+ t, 0)} ⊂ Ω,

(C4)
{

(x− t, y + t), (x− t, t),
(
1
2x− t,−

1
2x+ y + t

)
,
(
1
2x− t,−

1
2x+ t

)}
⊂ Ω,

(C5)
{

(x+ t,−y + t), (x+ t, t),
(
1
2x+ t,− 1

2x− y + t
)
,
(
1
2x+ t, 12x+ t

)}
⊂ Ω,

(C6) {(x+ y,−x+ y + t), (x,−x+ t), (y, y + t), (0, t)} ⊂ Ω,

respectively. We prove the Ulam-Hyers stability of (1.4) ∼ (1.6) in Ω.

Theorem 2.1. Suppose that f, g, h : X → Y satisfies the functional inequality

(2.1)

∥∥∥∥2f

(
x+ y

2

)
− g(x)− h(y)

∥∥∥∥ ≤ ε
for all (x, y) ∈ Ω. Then there exists a unique additive function A : X → Y
such that

‖f(x)−A(x)− f(0)‖ ≤ 2ε,(2.2)

‖g(x)−A(x)− g(0)‖ ≤ 4ε,(2.3)

‖h(x)−A(x)− h(0)‖ ≤ 4ε(2.4)

for all x ∈ X.

Proof. Let P (x, y) = 2f
(
x+y
2

)
− g(x) − h(y). Since Ω satisfies the condition

(C1), it follows from (2.1) that for given x, y ∈ X, there exists t ∈ X such that

‖P (2x+ t, 2y − t)‖ = ‖2f(x+ y)− g(2x+ t)− h(2y − t))‖ ≤ ε,(2.5)
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‖P (2x− 2y + t, 2y − t)‖ = ‖2f(x)− g(2x− 2y + t)− h(2y − t)‖ ≤ ε,
‖P (2x+ t,−2x+ 2y − t)‖ = ‖2f(y)− g(2x+ t)− h(−2x+ 2y − t)‖ ≤ ε,

‖P (2x− 2y + t,−2x+ 2y − t)‖(2.6)

= ‖2f(0)− g(2x− 2y + t)− h(−2x+ 2y − t)‖ ≤ ε.

Thus, using the triangle inequality we have

‖f(x+ y)− f(x)− f(y) + f(0)‖(2.7)

≤
∥∥∥∥1

2
P (2x+ t, 2y − t)− 1

2
P (2x− 2y + t, 2y − t)

−1

2
P (2x+ t,−2x+ 2y − t) +

1

2
P (2x− 2y + t,−2x+ 2y − t)

∥∥∥∥ ≤ 2ε

for all x, y ∈ X. Since Ω satisfies the condition (C2), it follows from (2.1) that
for given x, y ∈ X, there exists t ∈ X such that

‖P (x+ y, t)‖ =

∥∥∥∥2f

(
x+ y + t

2

)
− g(x+ y)− h(t)

∥∥∥∥ ≤ ε,
‖P (x, t)‖ =

∥∥∥∥2f

(
x+ t

2

)
− g(x)− h(t)

∥∥∥∥ ≤ ε,
‖P (y, x+ t)‖ =

∥∥∥∥2f

(
x+ y + t

2

)
− g(y)− h(x+ t)

∥∥∥∥ ≤ ε,
‖P (0, x+ t)‖ =

∥∥∥∥2f

(
x+ t

2

)
− g(0)− h(x+ t)

∥∥∥∥ ≤ ε.
Thus, using the triangle inequality we have

‖g(x+ y)− g(x)− g(y) + g(0)‖(2.8)

≤ ‖P (x+ y, t)− P (x, t)− P (y, x+ t) + P (0, x+ t)‖ ≤ 4ε

for all x, y ∈ X. Since Ω satisfies the condition (C3), it follows from (2.1) that
for given x, y ∈ X, there exists t ∈ X such that

‖P (t, x+ y)‖ =

∥∥∥∥2f

(
x+ y + t

2

)
− g(t)− h(x+ y)

∥∥∥∥ ≤ ε,
‖P (t, x)‖ =

∥∥∥∥2f

(
x+ t

2

)
− g(t)− h(x)

∥∥∥∥ ≤ ε,
‖P (x+ t, y)‖ =

∥∥∥∥2f

(
x+ y + t

2

)
− g(x+ t)− h(y)

∥∥∥∥ ≤ ε,
‖P (x+ t, 0)‖ =

∥∥∥∥2f

(
x+ t

2

)
− g(x+ t)− h(0)

∥∥∥∥ ≤ ε.
Thus, using the triangle inequality we have

‖h(x+ y)− h(x)− h(y) + h(0)‖(2.9)
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≤ ‖P (t, x+ y)− P (t, x)− P (x+ t, y) + P (x+ t, 0)‖ ≤ 4ε

for all x, y ∈ X. By Theorem 1.1 with (2.7) ∼ (2.9), there exist additive
functions A1, A2, A3 : X → Y such that

‖f(x)−A1(x)− f(0)‖ ≤ 2ε,(2.10)

‖g(x)−A2(x)− g(0)‖ ≤ 4ε,(2.11)

‖h(x)−A3(x)− h(0)‖ ≤ 4ε(2.12)

for all x ∈ X. Replacing x by 2x−2y+t, y by 2y in (2.8) and x by −2x+2y−t,
y by 2x in (2.9) we have

‖g(2x+ t)− g(2x− 2y + t)− g(2y) + g(0)‖ ≤ 4ε,(2.13)

‖h(2y − t)− h(−2x+ 2y − t)− h(2x) + h(0)‖ ≤ 4ε(2.14)

for all x, y ∈ X. Using the triangle inequality with (2.5), (2.6), (2.13) and
(2.14) we have

(2.15) ‖2f(x+ y)− g(2y)− h(2x)− 2f(0) + g(0) + h(0)‖ ≤ 10ε

for all x, y ∈ X. Replacing x by x+ y in (2.10), x by 2y in (2.11) and x by 2x
in (2.12) we have

‖f(x+ y)−A1(x+ y)− f(0)‖ ≤ 2ε,(2.16)

‖g(2y)−A2(2y)− g(0)‖ ≤ 4ε,(2.17)

‖h(2x)−A3(2x)− h(0)‖ ≤ 4ε(2.18)

for all x, y ∈ X. Using the triangle inequality with (2.15) ∼ (2.18) we have

(2.19) ‖2A1(x+ y)−A2(2y)−A3(2x)‖ ≤ 22ε

for all x, y ∈ X. Putting y = 0 in (2.19) and using the additivity of Aj ,
j = 1, 2, 3, we have A1 = A2. Similarly, putting x = 0 in (2.19) we have
A1 = A3. Thus, we have A1 = A2 = A3(:= A). Hence, there exists a unique
additive function A : X → Y such that (2.2) ∼ (2.4) for all x ∈ X. This
completes the proof. �

Theorem 2.2. Suppose that f, g, h : X → Y satisfies the functional inequality

(2.20) ‖f(x+ y) + g(x− y)− 2h(x)‖ ≤ ε

for all (x, y) ∈ Ω. Then there exists a unique additive function A : X → Y
such that

‖f(x)−A(x)− f(0)‖ ≤ 4ε,(2.21)

‖g(x)−A(x)− g(0)‖ ≤ 4ε,(2.22)

‖h(x)−A(x)− h(0)‖ ≤ 2ε(2.23)

for all x ∈ X.
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Proof. Let Q(x, y) = f(x+y)+g(x−y)−2h(x). Since Ω satisfies the condition
(C4), it follows from (2.20) that for given x, y ∈ X, there exists t ∈ X such
that

‖Q(x− t, y + t)‖ = ‖f(x+ y) + g(x− y − 2t)− 2h(x− t)‖ ≤ ε,(2.24)

‖Q(x− t, t)‖ = ‖f(x) + g(x− 2t)− 2h(x− t)‖ ≤ ε,∥∥∥∥Q(
1

2
x− t,−1

2
x+ y + t

)∥∥∥∥ =

∥∥∥∥f(y) + g(x− y − 2t)− 2h

(
1

2
x− t

)∥∥∥∥ ≤ ε,∥∥∥∥Q(
1

2
x− t,−1

2
x+ t

)∥∥∥∥ =

∥∥∥∥f(0) + g(x− 2t)− 2h

(
1

2
x− t

)∥∥∥∥ ≤ ε.(2.25)

Thus, using the triangle inequality we have

‖f(x+ y)− f(x)− f(y) + f(0)‖(2.26)

≤
∥∥∥∥Q(x− t, y + t)−Q(x− t, t)−Q

(
1

2
x− t,−1

2
x+ y + t

)
+Q

(
1

2
x− t,−1

2
x+ t

)∥∥∥∥ ≤ 4ε

for all x, y ∈ X. Since Ω satisfies the condition (C5), it follows from (2.20) that
for given x, y ∈ X, there exists t ∈ X such that

‖Q(x+ t,−y + t)‖ = ‖f(x− y + 2t) + g(x+ y)− 2h(x+ t)‖ ≤ ε,
‖Q(x+ t, t)‖ = ‖f(x+ 2t) + g(x)− 2h(x+ t)‖ ≤ ε,∥∥∥∥Q(

1

2
x+ t,−1

2
x− y + t

)∥∥∥∥ =

∥∥∥∥f(x− y + 2t) + g(y)− 2h

(
1

2
x+ t

)∥∥∥∥ ≤ ε,∥∥∥∥Q(
1

2
x+ t,

1

2
x+ t

)∥∥∥∥ =

∥∥∥∥f(x+ 2t) + g(0)− 2h

(
1

2
x+ t

)∥∥∥∥ ≤ ε.
Thus, using the triangle inequality we have

‖g(x+ y)− g(x)− g(y) + g(0)‖(2.27)

≤
∥∥∥∥Q(x+ y,−y + t)−Q(x+ t, t)−Q

(
1

2
x+ t,−1

2
x− y + t

)
+Q

(
1

2
x+ t,

1

2
x+ t

)∥∥∥∥ ≤ 4ε

for all x, y ∈ X. Since Ω satisfies the condition (C6), it follows from (2.20) that
for given x, y ∈ X, there exists t ∈ X such that

‖Q(x+ y,−x+ y + t)‖ = ‖f(2y + t) + g(2x− t)− 2h(x+ y)‖ ≤ ε,
‖Q(x,−x+ t)‖ = ‖f(t) + g(2x− t)− 2h(x)‖ ≤ ε,
‖Q(y, y + t)‖ = ‖f(2y + t) + g(−t)− 2h(y)‖ ≤ ε,
‖Q(0, t)‖ = ‖f(t) + g(−t)− 2h(0)‖ ≤ ε.
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Thus, using the triangle inequality we have

‖h(x+ y)− h(x)− h(y) + h(0)‖(2.28)

≤
∥∥∥∥1

2
Q(x+ y,−x+ y + t)− 1

2
Q(x,−x+ t)− 1

2
Q(y, y + t) +

1

2
Q(0, t)

∥∥∥∥
≤ 2ε

for all x, y ∈ X. By Theorem 1.1 with (2.26) ∼ (2.28), there exist additive
functions A1, A2, A3 : X → Y such that

‖f(x)−A1(x)− f(0)‖ ≤ 4ε,(2.29)

‖g(x)−A2(x)− g(0)‖ ≤ 4ε,(2.30)

‖h(x)−A3(x)− h(0)‖ ≤ 2ε(2.31)

for all x ∈ X. Replacing x by x− 2t, y by −y in (2.27) and x by 1
2x− t, y by

1
2x in (2.28) we have

‖g(x− y − 2t)− g(x− 2t)− g(−y) + g(0)‖ ≤ 4ε,(2.32) ∥∥∥∥h(x− t)− h
(

1

2
x− t

)
− h

(
1

2
x

)
+ h(0)

∥∥∥∥ ≤ 2ε(2.33)

for all x, y ∈ X. Using the triangle inequality with (2.24), (2.25), (2.32) and
(2.33) we have

(2.34)

∥∥∥∥f(x+ y) + g(−y)− 2h

(
1

2
x

)
− f(0)− g(0) + 2h(0)

∥∥∥∥ ≤ 10ε

for all x, y ∈ X. Replacing x by x+ y in (2.29), x by −y in (2.30) and x by 1
2x

in (2.31) we have

‖f(x+ y)−A1(x+ y)− f(0)‖ ≤ 4ε,(2.35)

‖g(−y)−A2(−y)− g(0)‖ ≤ 4ε,(2.36) ∥∥∥∥h(1

2
x

)
−A3

(
1

2
x

)
− h(0)

∥∥∥∥ ≤ 2ε(2.37)

for all x, y ∈ X. Using the triangle inequality with (2.34) ∼ (2.37) we have

(2.38)

∥∥∥∥A1(x+ y) +A2(−y)− 2A3

(
1

2
x

)∥∥∥∥ ≤ 22ε

for all x, y ∈ X. Putting y = 0 in (2.38) and using the additivity of Aj , j =
1, 2, 3, we have A1 = A3. Similarly, putting x = 0 in (2.38) we have A1 = A2.
Thus, we have A1 = A2 = A3(:= A). Hence, there exists a unique additive
function A : X → Y such that (2.21) ∼ (2.23) for all x ∈ X. This completes
the proof. �

Theorem 2.3. Suppose that f, g, h : X → Y satisfies the functional inequality

‖f(x+ y)− g(x− y)− 2h(y)‖ ≤ ε
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for all (x, y) ∈ Ω. Then there exists a unique additive function A : X → Y
such that

‖f(x)−A(x)− f(0)‖ ≤ 4ε,

‖g(x)−A(x)− g(0)‖ ≤ 4ε,

‖h(x)−A(x)− h(0)‖ ≤ 2ε

for all x ∈ X.

It is obvious that the set {(x, y) ∈ X2 : ‖x‖+‖y‖ ≥ d} satisfies the condition
(C1) ∼ (C6). Thus, as direct consequences of Theorem 2.1 ∼ Theorem 2.3 we
obtain the results following.

Corollary 2.4. Let d > 0. Suppose that f, g, h : X → Y satisfies the functional
inequality ∥∥∥∥2f

(
x+ y

2

)
− g(x)− h(y)

∥∥∥∥ ≤ ε
for all (x, y) ∈ X with ‖x‖ + ‖y‖ ≥ d. Then there exists a unique additive
mapping A : X → Y such that

‖f(x)−A(x)− f(0)‖ ≤ 2ε,

‖g(x)−A(x)− g(0)‖ ≤ 4ε,

‖h(x)−A(x)− h(0)‖ ≤ 4ε

for all x ∈ X.

Corollary 2.5. Let d > 0. Suppose that f, g, h : X → Y satisfies the functional
inequality

‖f(x+ y) + g(x− y)− 2h(x)‖ ≤ ε
for all (x, y) ∈ X with ‖x‖ + ‖y‖ ≥ d. Then there exists a unique additive
mapping A : X → Y such that

‖f(x)−A(x)− f(0)‖ ≤ 4ε,

‖g(x)−A(x)− g(0)‖ ≤ 4ε,

‖h(x)−A(x)− h(0)‖ ≤ 2ε

for all x ∈ X.

Corollary 2.6. Let d > 0. Suppose that f, g, h : X → Y satisfies the functional
inequality

‖f(x+ y)− g(x− y)− 2h(y)‖ ≤ ε
for all (x, y) ∈ X with ‖x‖ + ‖y‖ ≥ d. Then there exists a unique additive
mapping A : X → Y such that

‖f(x)−A(x)− f(0)‖ ≤ 4ε,

‖g(x)−A(x)− g(0)‖ ≤ 4ε,

‖h(x)−A(x)− h(0)‖ ≤ 2ε

for all x ∈ X.
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3. Main results

Throughout this section we assume that X is complete. By constructing
subsets Ω ⊂ X × X satisfying the three conditions (C1) ∼ (C6) we prove the
Hyers-Ulam stability of the functional equations (1.4) ∼ (1.6) satisfied on re-
stricted domains of form H2 ∩{(x, y) ∈ X2 : ‖x‖+ ‖y‖ ≥ d} with d > 0, where
H is a subset of X such that Hc is of the first category. As a consequence
we obtain a stability theorem of the functional equations on a set of Lebesgue
measure zero when X = R.

Recall that a subset K of a topological space E is said to be of the first
category if K is a countable union of nowhere dense subsets of E, and otherwise
it is said to be of the second category. As named Baire category theorem it is
well known that every nonempty open subset of a compact Hausdorff space or
a complete metric space is of the second category.

The proof of the following lemmas can be found in [15]. For the reader we
give the proof.

Lemma 3.1. Let H be a subset of X such that Hc := X \ H is of the first
category. Then, for any countable subsets U ⊂ X, Γ ⊂ R \ {0} and M > 0,
there exists t ∈ X with ‖t‖ ≥M such that

U + Γt = {u+ γt : u ∈ U, γ ∈ Γ} ⊂ H.
From now on we identify R2 with C.

Lemma 3.2. Let P = {(pj + γjt, qj + λjt) : j = 1, 2, . . . , r}, where pj , qj , t ∈
X, γj , λj ∈ R with γ2j + λ2j 6= 0 for all j = 1, 2, . . . , r. Then there exists a

θ ∈ [0, 2π) such that e−iθP := {(p′j + γ′jt, q
′
j + λ′jt) : j = 1, 2, . . . , r} satisfies

γ′jλ
′
j 6= 0 for all j = 1, 2, . . . , r.

Lemma 3.3. Let H be a subset of X such that Hc is of the first category. Then
there exists a θ ∈ [0, 2π) such that Ωθ,d := (eiθH2)∩{(x, y) ∈ X2 : ‖x‖+‖y‖ ≥
d} satisfies the conditions (C1) ∼ (C6) for all d > 0.

Remark 3.4. The set R of real numbers can be partitioned as follows:

R = K ∪ (R \ K),

where K is of Lebesgue measure zero and R \ K is of the first category [23,
Theorem 1.6]. Thus, in view of Lemma 3.3, Ωd := (eiθK2) ∩ {(x, y) ∈ R2 :
|x|+ |y| ≥ d} is of Lebesgue measure zero satisfying (C1) ∼ (C6).

Now, we obtain the following results.

Theorem 3.5. Suppose that f, g, h : R→ Y satisfies the functional inequality∥∥∥∥2f

(
x+ y

2

)
− g(x)− h(y)

∥∥∥∥ ≤ ε
for all (x, y) ∈ Ωd. Then there exists a unique additive mapping A : R → Y
such that

‖f(x)−A(x)− f(0)‖ ≤ 2ε,



810 C.-K. CHOI

‖g(x)−A(x)− g(0)‖ ≤ 4ε,

‖h(x)−A(x)− h(0)‖ ≤ 4ε

for all x ∈ R.

Theorem 3.6. Suppose that f, g, h : R→ Y satisfies the functional inequality

‖f(x+ y) + g(x− y)− 2h(x)‖ ≤ ε
for all (x, y) ∈ Ωd. Then there exists a unique additive mapping A : R → Y
such that

‖f(x)−A(x)− f(0)‖ ≤ 4ε,

‖g(x)−A(x)− g(0)‖ ≤ 4ε,

‖h(x)−A(x)− h(0)‖ ≤ 2ε

for all x ∈ R.

Theorem 3.7. Suppose that f, g, h : R→ Y satisfies the functional inequality

‖f(x+ y)− g(x− y)− 2h(y)‖ ≤ ε
for all (x, y) ∈ Ωd. Then there exists a unique additive mapping A : R → Y
such that

‖f(x)−A(x)− f(0)‖ ≤ 4ε,

‖g(x)−A(x)− g(0)‖ ≤ 4ε,

‖h(x)−A(x)− h(0)‖ ≤ 2ε

for all x ∈ R.

As a consequence of Theorem 3.5 we obtain the asymptotic behavior of f, g, h
satisfying

(3.1)

∥∥∥∥2f

(
x+ y

2

)
− g(x)− h(y)

∥∥∥∥→ 0

as |x|+ |y| → ∞ only for (x, y) ∈ Ω ⊂ R2 with m(Ω) = 0.

Corollary 3.8. Suppose that f, g, h : R → Y satisfies the condition (3.1).
Then there exists a unique additive mapping A : R→ Y such that

f(x) = A(x) + f(0),(3.2)

g(x) = A(x) + g(0),(3.3)

h(x) = A(x) + h(0)(3.4)

for all x ∈ R.

Proof. The condition (3.1) implies that for each n ∈ N, there exists dn > 0
such that ∥∥∥∥2f

(
x+ y

2

)
− g(x)− h(y)

∥∥∥∥ ≤ 1

n
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for all (x, y) ∈ Ωdn . By Theorem 3.5, there exists a unique additive mapping
An : R→ Y such that

‖f(x)−An(x)− f(0)‖ ≤ 2

n
,(3.5)

‖g(x)−An(x)− g(0)‖ ≤ 4

n
,(3.6)

‖h(x)−An(x)− h(0)‖ ≤ 4

n
(3.7)

for all n ∈ N and x ∈ R. Replacing n by m ∈ N in (3.5) we have

(3.8) ‖f(x)−Am(x)− f(0)‖ ≤ 2

m

for all m ∈ N and x ∈ R. Using the triangle inequality with (3.5) and (3.8) we
have

‖Am(x)−An(x)‖ ≤ 2

m
+

2

n
≤ 4(3.9)

for all m,n ∈ N and x ∈ R. From the additivity of Am, An, it follows that
Am = An for all m,n ∈ N. Letting n → ∞ in (3.9) we get (3.2). Similarly,
replacing n by m ∈ N in (3.6) and (3.7), respectively, we have

‖Am(x)−An(x)‖ ≤ 4

m
+

4

n
≤ 8(3.10)

for all m,n ∈ N and x ∈ R. From the additivity of Am, An, it follows that
Am = An for all m,n ∈ N. Letting n → ∞ in (3.10) we get (3.3) and (3.4).
This completes the proof. �

Similarly, using Theorem 3.6 and Theorem 3.7 we have the following.

Corollary 3.9. Suppose that f, g, h : R→ Y satisfies the condition

‖f(x+ y) + g(x− y)− 2h(x)‖ → 0

as |x|+ |y| → ∞ only for (x, y) ∈ Ω ⊂ R2 with m(Ω) = 0. Then there exists a
unique additive mapping A : R→ Y such that

f(x) = A(x) + f(0),

g(x) = A(x) + g(0),

h(x) = A(x) + h(0)

for all x ∈ R.

Corollary 3.10. Suppose that f, g, h : R→ Y satisfies the condition

‖f(x+ y)− g(x− y)− 2h(y)‖ → 0

as |x|+ |y| → ∞ only for (x, y) ∈ Ω ⊂ R2 with m(Ω) = 0. Then there exists a
unique additive mapping A : R→ Y such that

f(x) = A(x) + f(0),

g(x) = A(x) + g(0),
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h(x) = A(x) + h(0)

for all x ∈ R.
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