ON THE ASYMPTOTIC-NORMING PROPERTY IN LEBESGUE-BOCHNER FUNCTION SPACES

SUNG JIN CHO[†] AND BYUNG SOO LEE[‡]

1. Introduction

In [12] Zhibao Hu and Bor-Luh Lin proved that a Banach space X has the asymptotic-norming property I if and only if $L_p(X,\mu)$, 1 , has the asymptotic-norming property I. And they proved that if <math>X is an Asplund space and X has the asymptotic-norming property III, then $L_p(X,\mu)$, 1 also has the asymptotic-norming property III.

In this paper we prove that if (Ω, Σ, μ) is a non-purely atomic measure space and X is strictly convex, then X has the asymptotic-norming property II if and only if $L_p(X,\mu)$, $1 , has the asymptotic-norming property II. And we prove that if <math>X^*$ is an Asplund space and strictly convex, then for any p, 1 ,

 X^* has the w^* -ANP-II if and only if $L_p(X^*, \mu)$ has the w^* -ANP-II.

2. Preliminaries and definitions

Throughout this paper, let X be a Banach space, $S_X = \{x : x \in X, ||x|| = 1\}$ and $B_X = \{x : x \in X, ||x|| \le 1\}.$

DEFINITION 2.1([8,11]). Let Φ be a subset of B_{X^*} . Φ is a norming set of X if $||x|| = \sup_{x^* \in \Phi} x^*(x)$ for all x in X. A sequence $\{x_n\}$ in S_X is said to be asymptotically normed by Φ if for any $\epsilon > 0$, there is $x^* \in \Phi$ and $m \in N$ such that $x^*(x_n) > 1 - \epsilon$ for all $n \geq m$.

DEFINITION 2.2([11,12]). For $\kappa = I$, II, or III, a sequence $\{x_n\}$ in X is said to have the property k if

- (I) $\{x_n\}$ is convergent;
- (II) $\{x_n\}$ has a convergent subsequence; or
- (III) $\bigcap_{n=1}^{\infty} \overline{\operatorname{co}}\{x_k : k \ge n\} \ne \emptyset.$

Received July 5, 1991.

Let Φ be a norming set of X. X is said to have the asymptotic-norming property κ , $\kappa = I$, II, III, with respect to $\Phi(\Phi\text{-ANP-}\kappa)$ if every sequence in S_X that is asymptotically normed by Φ has the property κ . X is said to have the asymptotic-norming property $\kappa(\text{ANP-}\kappa)$, if there is an equivalent norm $\|\cdot\|$ on X such that there is a norming set Φ with respect to $(X, \|\cdot\|)$ such that X has the $\Phi\text{-ANP-}\kappa$, where $\kappa = I$, II, III.

The following Theorem is proved in [11].

THEOREM 2.3. Let Φ be a norming set of X. Then

- (a) X has the Φ -ANP-I if and only if X has the Φ -ANP-III and X has the property (G), i.e. every point of S_X is a denting point of B_X [3,4];
- (b) X has the Φ -ANP-II if and only if X has the Φ -ANP-III and X has the Kadec-Klee property, i.e. for any sequence $\{x_n\}$ and $\{x\}$ in B_X such that $\lim_n ||x_n|| = ||x|| = 1$ and $w \lim_n x_n = x$ then $\lim_n ||x_n x|| = 0$ [1,2];
- (c) X has the Φ -ANP-I if and only if X has the Φ -ANP-II and X is strictly convex, i.e. S_X contains no non-trivial line segments [5].

The following Theorem is proved in [12].

THEOREM 2.4. Let X be a separable Banach space and let (Ω, Σ, μ) be a σ -finite measure space. Let Φ be a norming set of X such that $\Phi = co\{\Phi \cup \{0\}\}\$ and $\Phi \cap S_{X^*} = \emptyset$. Let $\triangle(\Phi, \Sigma, \mu) = \bigcup_{n=1}^{\infty} \triangle_n$ where

$$\Delta_n = \left\{ \sum_{i=1}^m \lambda_i x_i^* \chi_A : \lambda_i \ge 0, \ x_i \in \Phi, \ \frac{n-1}{n} \le ||x_i^*|| < \frac{n}{n+1}, \right.$$
$$A_i \cap A_j = \emptyset \text{ for all } i \ne j, \ i, j = 1, \dots, m \text{ and } \sum_{i=1}^m \lambda_i^q \mu(A_i) = 1 \right\}.$$

Then

- (a) $\triangle(\Phi, \Sigma, \mu)$ is a norming set of $L_p(X, \mu)$;
- (b) If X is an Asplund space [9] and X has the Φ -ANP-III, then $L_p(X,\mu)$ has the $\triangle(\Phi,\Sigma,\mu)$ -ANP-III.

The following Theorem is proved in [12].

On the asymptotic-norming property in Lebesgue-Bochner function spaces

THEOREM 2.5. Let X be a Banach space and let (Ω, Σ, μ) be a measure space. Then for any p, 1 ,

X has the ANP-I if and only if $L_p(X, \mu)$ has the ANP-I.

3. Asymptotic-norming property in $L_p(X, \mu)$ (1

In this section we prove that if (Ω, Σ, μ) is a non-purely atomic measure space and X is strictly convex, then X has the ANP-II if and only if $L_p(X, \mu)$ has the ANP-II. And we prove that if X^* is strictly convex and Asplund, then X^* has the w^* -ANP-II if and only if $L_p(X^*, \mu)$ has the w^* -ANP-II.

LEMMA 3.1. Let (Ω, Σ, μ) be a non-purely atomic measure space. Then the following are equivalent:

- (i) $L_p(X,\mu)$ has the ANP-I;
- (ii) $L_p(X,\mu)$ has the ANP-II.

Proof. Suppose $L_p(X,\mu)$ has the Φ -ANP-II for some norming set Φ in the dual space of $L_p(X,\mu)$. Then $L_p(X,\mu)$ has the Kadec-Klee property by Theorem 2.3. Since (Ω, Σ, μ) is non-purely atomic, it follows from [10] that $L_p(X,\mu)$ is strictly convex. By Theorem 2.3, $L_p(X,\mu)$ has the ANP-I.

COROLLARY 3.2. Let (Ω, Σ, μ) be a non-purely atomic measure space and let X be a Banach space having the property (G), then the following are equivalent:

- (i) $L_p(X, \mu)$ has the ANP-I;
- (ii) $L_p(X, \mu)$ has the ANP-II;
- (iii) $L_p(X, \mu)$ has the ANP-III.

Proof. We only need to show that (iii) implies (i). Let $L_p(X,\mu)$ has the Φ -ANP-III for some norming set Φ in the dual space of $L_p(X,\mu)$. Since X has (G), $L_p(X,\mu)$ has (G)[1] and thus $L_p(X,\mu)$ has the Φ -ANP-I by Theorem 2.3. Hence $L_p(X,\mu)$ has the ANP-I.

THEOREM 3.3. Let X be a Banach space and let (Ω, Σ, μ) be a non-purely atomic measure space. Let X be strictly convex. Then for any p, 1 ,

X has the ANP-II if and only if $L_p(X, \mu)$ has the ANP-II.

Proof. Let $L_p(X,\mu)$ has the ANP-II. Then by Lemma 3.1 $L_p(X,\mu)$ has the ANP-I. By Theorem 2.5 X has the ANP-I and so X has the ANP-II.

Conversely, suppose X has the Φ -ANP-II for some norming set Φ of B_{X^*} . Since X is strictly convex, X has the Φ -ANP-I by Theorem 2.3. By Theorem 2.5 $L_p(X,\mu)$ has the ANP-II. Hence $L_p(X,\mu)$ has the ANP-II.

DEFINITION 3.4[11]. Let X^* be a dual Banach space of X. We say that X^* has the weak* asymptotic-norming property $\kappa(w^*\text{-ANP-}\kappa)$ if there is an equivalent norm $\|\cdot\|$ on X and a norming set Φ in $B_{(X,\|\cdot\|)}$ such that $(X^*,\|\cdot\|)$ has the Φ -ANP- $\kappa,\kappa=I$, II, or III.

The following Corollary is in [12].

COROLLARY 3.5. Let (Ω, Σ, μ) be a measure space. If X^* has the w^* -ANP- κ , $\kappa = I$ or III and X^* is an Asplund space then $L_p(X^*, \mu)$, $1 , has the <math>w^*$ -ANP- κ , $\kappa = I$ or III.

LEMMA 3.6. Let X be a Banach space which X^* is Asplund and let (Ω, Σ, μ) be a measure space. If X^* has the Φ -ANP-III for some norming set Φ of B_X , then $L_p(X^*, \mu)$ has the $\triangle(\Phi, \Sigma, \mu)$ -ANP-III, where $\triangle(\Phi, \Sigma, \mu)$ be defined as in Theorem 2.4.

Proof. If X^* has the Φ -ANP-III for some norming set Φ in B_X , then we may assume that $\Phi = \operatorname{co}\{\Phi \cup \{0\}\}$ and $\Phi \cap S_X = \emptyset$. Suppose $\{f_n\}$ be a sequence in the unit sphere of $L_p(X^*,\mu)$ that is asymptotically normed by $\triangle(\Phi,\Sigma,\mu)$. Since each f_n is essentially separably valued, we may assume that there is a separable subspace of Y of X^* such that $f_n(\Omega) \subset Y$ for all $n \in N$. Let $\Omega_1 = \{t \in \Omega \mid f_n(t) \neq 0 \text{ for some } n \in N\}$, $\sum_1 = \{A \cap \Omega_1 \mid A \in \sum\}$ and $\mu_1 = \mu \mid_{\sum_1}$. Then $(\Omega_1, \Sigma_1, \mu_1)$ is a σ -finite measure space. Let $\Phi_1 = \{x \mid_{Y}: x \in \Phi\}$. Then $\Phi_1 = \operatorname{co}\{\Phi_1 \cup \{0\}\}$ and $\Phi_1 \cap S_Y = \emptyset$ and Y has the Φ_1 -ANP-III and Y^* is separable and so Y^* has the RNP[6], i.e. Y is an Asplund space. By Theorem 2.4, it follows that $L_p(Y, \mu_1)$ has the $\triangle(\Phi_1, \Sigma_1, \mu_1)$ -ANP-III. Hence $L_p(X^*, \mu)$ has the $\triangle(\Phi, \Sigma, \mu)$ -ANP-III.

THEOREM 3.7. Let X^* be an Asplund space and let X^* be strictly convex. Then for any p, 1 ,

 X^* has the w^* -ANP-II if and only if $L_p(X^*, \mu)$ has the w^* -ANP-II.

Proof. We only need to show that if X^* has the w^* -ANP-II then $L_p(X^*,\mu)$ has the w^* -ANP-II. Suppose X^* has the w^* -ANP-II. Then X^* has the RNP. Hence $L_p(X^*,\mu) = [L_q(X,\mu)]^*[6]$. If X^* has the Φ -ANP-III and X^* has the Kadec-Klee property. Since X^* has the Φ -ANP-III and X^* is Asplund, by Lemma 3.6 $L_p(X^*,\mu)$ has the $\Delta(\Phi,\Sigma,\mu)$ -ANP-III. Also $\Delta(\Phi,\Sigma,\mu)$ is in the unit ball of $L_q(X,\mu)$. Since X^* is a strictly convex space with the Kadec-Klee property, $L_p(X^*,\mu)$ has the Kadec-Klee property [1]. Hence, by Theorem 2.3, $L_p(X^*,\mu)$ has the $\Delta(\Phi,\Sigma,\mu)$ -ANP-II and so $L_p(X^*,\mu)$ has the w^* -ANP-II.

References

- Bor-Luh Lin and Pei-Kee Lin, Property(H) in Lebesgue-Bochner function spaces, Proc. Amer. Math. Soc. 95(1985), 581-584.
- Bor-Luh Lin, Pei-Kee Lin and S.L. Troyanski, Some geometric and topological properties of the unit sphere in a Banach space, Math. Ann. 274(1986), 613-616.
- Bor-Luh Lin and Pei-Kee Lin and S.L. Troyanski, A characterization of denting points of a closed bounded convex set, Longhorn Notes, U.T. Functional Analysis Seminar, 1985-1986, The University of Texas at Austin, 99-101.
- Bor-Luh Lin and Pei-Kee Lin and S.L. Troyanski, CHARACTERIZATIONS OF DENTING POINTS, Proc. Amer. Math. Soc. Vol. 102, No.3(1988), 526-528.
- J. Diestel, Geometry of Banach spaces, selected topics, Lect. Notes in Math., Springer-Verlag, 485(1975).
- J. Diestel and J.J. Uhl, Jr., Vector measures, Math. Surveys, No.15, Amer. Math. Soc. Providence, R.I., 1977.
- 7. N. Ghoussoub and B. Maurey, THE ASYMPTOTIC-NORMING AND THE RADON-NIKODYM PROPERTIES ARE EQUIVALENT IN SEPARABLE BANACH SPACES, Proc. Amer. Soc. 94(1985), 665-671.
- R.C. James and A. Ho, The asymptotic-norming and the Radon-Nikodym properties for Banach spaces, Ark. Mat. 19(1981), 53-70.
- R.R. Phelps, Convex functions, monotone operators and differentiability, Lect. Notes in Math., Springer-Verlag, 1364(1989).
- M.A. Smith and B. Turett, Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Soc. 257(1980), 105-118.
- Zhibao Hu and Bor-Luh Lin, On the asymptotic-norming property of Banach space, Proc. of the Conference on Function Spaces, Univ. Southern Illinois at Edwardsville (1991).(to appear).

Sung Jin Cho and Byung Soo Lee

12. Zhibao Hu and Bor-Luh Lin, Asymptotic-norming property in Lebesgue-Bochner function spaces. (preprint).

[†]DEPARTMENT OF NATURAL SCIENCES, PUSAN NATIONAL UNIVERSITY OF TECHNOLOGY, PUSAN 608-739, KOREA

[‡]DEPARTMENT OF MATHEMATICS, KYUNGSUNG UNIVERSITY, PUSAN 608-736, KOREA