• 제목/요약/키워드: Lead-on-chip

검색결과 116건 처리시간 0.024초

Ni/Au 및 OSP로 Finish 처리한 PCB 위에 스크린 프린트 방법으로 형성한 Sn-37Pb, Sn-3.5Ag 및 Sn-3.8Ag-0.7Cu 솔더 범프 계면 반응에 관한 연구 (Studies on the Interfacial Reaction of Screen-Printed Sn-37Pb, Sn-3.5Ag and Sn-3.8Ag-0.7Cu Solder Bumps on Ni/Au and OSP finished PCB)

  • 나재웅;손호영;백경욱;김원회;허기록
    • 한국재료학회지
    • /
    • 제12권9호
    • /
    • pp.750-760
    • /
    • 2002
  • In this study, three solders, Sn-37Pb, Sn-3.5Ag, and Sn-3.8Ag-0.7Cu were screen printed on both electroless Ni/Au and OSP metal finished micro-via PCBs (Printed Circuit Boards). The interfacial reaction between PCB metal pad finish materials and solder materials, and its effects on the solder bump joint mechanical reliability were investigated. The lead free solders formed a large amount of intermetallic compounds (IMC) than Sn-37Pb on both electroless Ni/Au and OSP (Organic Solderabilty Preservatives) finished PCBs during solder reflows because of the higher Sn content and higher reflow temperature. For OSP finish, scallop-like $Cu_{6}$ /$Sn_{5}$ and planar $Cu_3$Sn intermetallic compounds (IMC) were formed, and fracture occurred 100% within the solder regardless of reflow numbers and solder materials. Bump shear strength of lead free solders showed higher value than that of Sn-37Pb solder, because lead free solders are usually harder than eutectic Sn-37Pb solder. For Ni/Au finish, polygonal shaped $Ni_3$$Sn_4$ IMC and P-rich Ni layer were formed, and a brittle fracture at the Ni-Sn IMC layer or the interface between Ni-Sn intermetallic and P-rich Ni layer was observed after several reflows. Therefore, bump shear strength values of the Ni/Au finish are relatively lower than those of OSP finish. Especially, spalled IMCs at Sn-3.5Ag interface was observed after several reflow times. And, for the Sn-3.8Ag-0.7Cu solder case, the ternary Sn-Ni-Cu IMCs were observed. As a result, it was found that OSP finished PCB was a better choice for solders on PCB in terms of flip chip mechanical reliability.

고온 시효 시험에 따른 Epoxy 솔더 접합부의 접합 특성 평가 (Evaluation of Bonding Properties of Epoxy Solder Joints by High Temperature Aging Test)

  • 강민수;김도석;신영의
    • 한국전기전자재료학회논문지
    • /
    • 제32권1호
    • /
    • pp.6-12
    • /
    • 2019
  • Bonding properties of epoxy-containing solder joints were investigated by a high temperature aging test. Specimens were prepared by bonding an R3216 standard chip resistor to an OSP-finished PCB by a reflow process with two basic types of solder (SAC305 & Sn58Bi) pastes and two epoxy-solder (SAC305+epoxy & Sn58Bi+epoxy) pastes. In all epoxy solder joints, an epoxy fillet was formed in the hardened epoxy, lying around the outer edge of the solder joint, between the chip and the Cu pad. In order to analyze the bonding characteristics of solder joints at high temperatures, a high-temperature aging test at $150^{\circ}C$ was carried out for 14 days (336 h). After aging, the intermetallic compound $Cu_6Sn_5$ was found to have formed in the solder joint on the Cu pad, and the shear stress on the conventional solder joint was reduced by a significant amount. The reason that the shear force did not decrease much, even though in epoxy solder, was thatbecause epoxy hardened at the outer edge of the supported solder joints. Using epoxy solder, strong bonding behavior can be ensured due to this resistance to shear force, even in metallurgical changes such as those where intermetallic compounds form at solder joints.

Sn-Ag-Cu-X 무연솔더로 솔더링 된 접합부의 진동파괴 거동 (Behavior of Vibration Fracture for Sn-Ag-Cu-X Solders by Soldering)

  • 진상훈;강남현;조경목;이창우;홍원식
    • Journal of Welding and Joining
    • /
    • 제30권2호
    • /
    • pp.65-69
    • /
    • 2012
  • Environmental and health concerns over the lead have led to investigation of the alternative Pb-free solders to replace commonly used Pb-Sn solders in microelectronic packaging application. The leading candidates for lead-free solder alloys are presently the near eutectic Sn-Ag-Cu alloys. Therefore, extensive studies on reliability related with the composition have been reported. However, the insufficient drop property of the near eutectic Sn-Ag-Cu alloys has demanded solder compositions of low Ag content. In addition, the solder interconnections in automobile applications like a smart box require significantly improved vibration resistance. Therefore, this study investigated the effect of alloying elements (Ag, Bi, In) on the vibration fatigue strength. The vibration fatigue was conducted in 10~1000Hz frequency and 20Grms. The interface of the as-soldered cross section close to the Cu pad indicated the intermetallic compound ($Cu_6Sn_5$) regardless of solder composition. The type and thickness of IMC was not significantly changed after the vibration test. It indicates that no thermal activities occurred significantly during vibration. Furthermore, as a function of alloying composition, the vibration crack path was investigated with a focus on the IMCs. Vibration crack was initiated from the fillet surface of the heel for QFP parts and from the plating layer of chip parts. Regardless of the solder composition, the crack during a vibration test was propagated as same as that during a thermal fatigue test.

Nanoplasmonics: Enabling Platform for Integrated Photonics and Sensing

  • Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.75-75
    • /
    • 2015
  • Strong interactions between electromagnetic radiation and electrons at metallic interfaces or in metallic nanostructures lead to resonant oscillations called surface plasmon resonance with fascinating properties: light confinement in subwavelength dimensions and enhancement of optical near fields, just to name a few [1,2]. By utilizing the properties enabled by geometry dependent localization of surface plasmons, metal photonics or plasmonics offers a promise of enabling novel photonic components and systems for integrated photonics or sensing applications [3-5]. The versatility of the nanoplasmonic platform is described in this talk on three folds: our findings on an enhanced ultracompact photodetector based on nanoridge plasmonics for photonic integrated circuit applications [3], a colorimetric sensing of miRNA based on a nanoplasmonic core-satellite assembly for label-free and on-chip sensing applications [4], and a controlled fabrication of plasmonic nanostructures on a flexible substrate based on a transfer printing process for ultra-sensitive and noise free flexible bio-sensing applications [5]. For integrated photonics, nanoplasmonics offers interesting opportunities providing the material and dimensional compatibility with ultra-small silicon electronics and the integrative functionality using hybrid photonic and electronic nanostructures. For sensing applications, remarkable changes in scattering colors stemming from a plasmonic coupling effect of gold nanoplasmonic particles have been utilized to demonstrate a detection of microRNAs at the femtomolar level with selectivity. As top-down or bottom-up fabrication of such nanoscale structures is limited to more conventional substrates, we have approached the controlled fabrication of highly ordered nanostructures using a transfer printing of pre-functionalized nanodisks on flexible substrates for more enabling applications of nanoplasmonics.

  • PDF

플립칩 패키지에서의 일렉트로마이그레이션 현상 (Electro-migration Phenomenon in Flip-chip Packages)

  • 이기주;김근수;가차와키스가누마
    • 마이크로전자및패키징학회지
    • /
    • 제17권4호
    • /
    • pp.11-17
    • /
    • 2010
  • 차세대 패키징 기술을 실현하기 위해서는 극복해야 할 기술적인 과제들이 많이 존재한다. 그 중에서 솔더 접합부의 EM에 의한 고장은 오랜전부터 알려진 과제이지만, 고밀도화, 파인핏치화, 발열문제가 심각해지면서 현실적인 문제로 인식되기 시작했다. 더욱이 솔더가 무연화 되면서 다양해진 구성원소들의 영향에 대한 연구가 시작되었다. 지금까지의 연구결과를 종합해보면 Sn-Pb 공정솔더 보다 무연솔더는 EM에 대한 저항성이 강한 것으로 보여진다. 하지만, 무연솔더 접합부에서 발생하는 EM현상에 대해서는 아직 밝혀지지 않은 부분이 많다. 보이드의 핵 생성 및 성장속도와 전기저항의 급격한 변화와의 관계, Sn 결정립의 방향과 전류밀도에 따른 마이그레이션 속도계수와 수명예측기술, 각종 무연솔더와 시험조건에서의 언더필의 효과 등에 관한 다양한 연구가 필요하다. 또한 무연 플립칩 패키지의 총체적인 신뢰성 확보를 위해, EM과 반도체칩 내부배선의 발열에 기인하는 Thermomigraton, 응력에 기인하는 Stress-migration과의 상관관계에 대한 연구도 요구된다.

온도변화에 따른 진동의 무연솔더 접합부 신뢰성에 미치는 영향 (Influence of complex environment test on lead-free solder joint reliability)

  • 사윤기;유세훈;김영국;이창우
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.77-77
    • /
    • 2009
  • ELV(; End of Life Vehicles)를 비롯한 최근 환경 동향은 자동차 전장 모듈에 대하여 다양한 무연 솔더 적용을 요구하고 있다. 특히 자동차 엔진룸과 트랜스미션은 가동 중 고온 및 진동의 지속적인 영향을 받기 때문에 이와 유사한 환경에서의 신뢰성 연구가 필요한 시점이다. 이에 본 연구에서는 Sn3.5Ag, Sn0.7Cu, Sn5.0Sb 솔더 조성에 대하여 복합환경 조건하에서 접합부 신뢰성을 평가하였다. 복합환경을 구현하기 위하여 $-40{\sim}150^{\circ}C$ 범위의 온도 사이클과 랜덤 진동을 동시에 인가하였으며, 진동 가속도 3G, 진동주파수는 10~1000Hz 로 설정하여 자동차 환경을 충족하였다. 복합시험의 1 cycle 은 20 시간이며, 총 120 시간의 시험 동안 진동의 영향 및 진동과 고온이 동시에 작용하였을 경우의 영향에 대해 비교하였다. 테스트 모듈 제작을 위해 450 um 의 솔더볼이 적용되었으며, 각 조성의 솔더볼을 이용하여 BGA test chip 제작하였고, 제작된 BGA test chip 은 다시 daisy chain PCB 위에 실장 및 리플로우 공정을 통해 접합되었다. 테스트 동안 In-situ 로 저항의 변화를 관찰하여 파단의 유무를 판단하였고 전자주사현미경을 통해 파괴 기전을 평가하였다. 복합시험 시간에 따른 전단강도를 측정하였으며, 각 조성에 대하여 상이한 전단강도 변화를 관찰하였다. 계면 IMC 형상은 전단강도 변화에 영향을 주었으며, 특히 높은 온도가 IMC 성장을 촉진시켜 전단강도 감소에 영향을 주었다. 본 복합환경 시험 조건에서는 Sn0.7Cu 가 가장 안정적이었으며, 파단면을 관찰한 결과 연성파괴 모드가 관찰되었다.

  • PDF

Light Intensity 및 명암비 향상을 위한 마이크로 LED의 사파이어 기판 형상 변화 연구 (The Variation of Sapphire Substrate Shape of Micro LED Array to Increasing of Light Intensity and Contrast Ratio)

  • 차유정;곽준섭
    • 한국전기전자재료학회논문지
    • /
    • 제34권1호
    • /
    • pp.8-15
    • /
    • 2021
  • Micro-LEDs can be applied to various parts of a product. However, it has disadvantages compared to general LEDs in large displays such as low efficiency, intensity, and contrast ratio, among others, owing to their short history of study. The simulations were carried out using ray-tracing software to investigate the change in light intensity and light distribution according to pattern shapes on the sapphire substrate of the flip-chip micro-LED (FC μ-LED) array. Three patterns-concave square patterns, convex square patterns, and Ag coated convex patterns-which existed on the opposite side of FC μ-LEDs (115 ㎛ × 115 ㎛) array, were applied. The intensity of FC μ-LEDs on the center of the receivers depends on the pattern depth with shape. The concave square patterns having FC μ-LEDs arrays show that decreasing intensity as the patterns depth. On the contrary, the convex square patterns having FC μ-LEDs arrays shows that increasing intensity as the patterns depth. In addition, the highest intensity shows that FC μ-LEDs having Ag-coated convex patterns on the opposite side of sapphire lead to a reduction in light crosstalk owing to the Ag film.

반도체 봉지수지의 파괴 인성치 측정 및 패키지 적용 (Fracture Toughness Measurement of the Semiconductor Encapsulant EMC and It's Application to Package)

  • 김경섭;신영의;장의구
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권6호
    • /
    • pp.519-527
    • /
    • 1997
  • The micro crack was occurred where the stress concentrated by the thermal stress which was induced during the cooling period after molding process or by the various reliability tests. In order to estimate the possibility of development from inside micro crack to outside fracture, the fracture toughness of EMC should be measured under the various applicable condition. But study was conducted very rarely for the above area. In order to provide a was to decide the fracture resistance of EMC (Epoxy Molding Compound) of plastic package which is produced by using transfer molding method, measuring fracture is studied. The specimens were made with various EMC material. The diverse combination of test conditions, such as different temperature, temperature /humidity conditions, different filler shapes, and post cure treatment, were tried to examine the effects of environmental condition on the fracture toughness. This study proposed a way which could improve the reliability of LOC(Lead On Chip) type package by comparing the measured $J_{IC}$ of EMC and the calculated J-integral value from FEM(Finite Element Method). The measured $K_{IC}$ value of EMC above glass transition temperature dropped sharply as the temperature increased. The $K_{IC}$ was observed to be higher before the post cure treatment than after the post cure treatment. The change of $J_{IC}$ was significant by time change. J-integral was calculated to have maximum value the angle of the direction of fracture at the lead tip was 0 degree in SOJ package and -30 degree in TSOP package. The results FEM simulation were well agreed with the results of measurement within 5% tolerance. The package crack was proved to be affected more by the structure than by the composing material of package. The structure and the composing material are the variables to reduce the package crack.ack.

  • PDF

자동차 전장용 무연솔더 및 솔더 접합부의 신뢰성 평가 (Lead-free Solder for Automotive Electronics and Reliability Evaluation of Solder Joint)

  • 방정환;유동열;고용호;윤정원;이창우
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.26-34
    • /
    • 2016
  • Automotive today has been transforming to an electronic product by adopting a lot of convenience and safety features, suggesting that joining materials and their mechanical reliabilities are getting more important. In this study, a Sn-Cu-Cr-Ca solder composition having a high melting temperature ($>230^{\circ}C$) was fabricated and its joint properties and reliability was investigated with an aim to evaluate the suitability as a joining material for electronics of engine room. Furthermore, mechanical properties change under complex environment were compared with several existing solder compositions. As a result of contact angle measurement, favorable spreadability of 84% was shown and the average shear strength manufactured with corresponding composition solder paste was $1.9kg/mm^2$. Also, thermo-mechanical reliability by thermal shock and vibration test was compared with that of the representative high temperature solder materials such as Sn-3.5Ag, Sn-0.7Cu, and Sn-5.0Sb. In order to fabricate the test module, solder balls were made in joints with ENIG-finished BGA and then the BGA chip was reflowed on the OPS-finished PCB pattern. During the environmental tests, resistance change was continuously monitored and the joint strength was examined after tests. Sn-3.5Ag alloy exhibited the biggest degradation rate in resistance and shear stress and Sn-0.7Cu resulted in a relatively stable reliability against thermo-mechanical stress coming from thermal shock and vibration.

자동차 전장품용 무연솔더 접합부의 시리즈 시험 유효성 (Validation of sequence test method of Pb-free solder joint for automotive electronics)

  • 김아영;오철민;홍원식
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.25-31
    • /
    • 2015
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from electronic devices and system. Specifically, reliability issue of lead-free solder joint have an increasing demand for the car electronics caused by ELV banning. The authors prepared engine control unit and cabin electronics soldered with Sn-3.0Ag-0.5Cu (SAC305). To compare with the degradation characteristics of solder joint strength, thermal cycling test (TC), power-thermal cycling test (PTC) and series tests were conducted. Series tests were conducted for TC and PTC combined stress test using the same sample in sequence and continuously. TC test was performed at $-40{\sim}125^{\circ}C$ and soak time 10 min for 1000 cycles. PTC test was applied by pulse power and full function conditions during 100 cycles. Combined stress test was tested in accordance with automotive company standard. Solder joint degradation was observed by optical microscopy and environment scanning electron microscopy (ESEM). In addition, to compare with deterioration of bond strength of quad flat package (QFP) and chip components, we have measured lead pull and shear strength. Based on the series test results, consequently, we have validated of series test method for lifetime and reliability of Pb-free solder joint in automotive electronics.