Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.1.8

The Variation of Sapphire Substrate Shape of Micro LED Array to Increasing of Light Intensity and Contrast Ratio  

Cha, Yu-Jung (Department of Printed Electronics Engineering, Sunchon National University)
Kwak, Joon Seop (Department of Printed Electronics Engineering, Sunchon National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.1, 2021 , pp. 8-15 More about this Journal
Abstract
Micro-LEDs can be applied to various parts of a product. However, it has disadvantages compared to general LEDs in large displays such as low efficiency, intensity, and contrast ratio, among others, owing to their short history of study. The simulations were carried out using ray-tracing software to investigate the change in light intensity and light distribution according to pattern shapes on the sapphire substrate of the flip-chip micro-LED (FC μ-LED) array. Three patterns-concave square patterns, convex square patterns, and Ag coated convex patterns-which existed on the opposite side of FC μ-LEDs (115 ㎛ × 115 ㎛) array, were applied. The intensity of FC μ-LEDs on the center of the receivers depends on the pattern depth with shape. The concave square patterns having FC μ-LEDs arrays show that decreasing intensity as the patterns depth. On the contrary, the convex square patterns having FC μ-LEDs arrays shows that increasing intensity as the patterns depth. In addition, the highest intensity shows that FC μ-LEDs having Ag-coated convex patterns on the opposite side of sapphire lead to a reduction in light crosstalk owing to the Ag film.
Keywords
Micro LEDs; Patterned sapphire substrate; Simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Zhang, F. Ou, W. C. Chong, Y. Chen, and Q. Li, J. Soc. Inf. Disp., 26, 137 (2018). [DOI: https://doi.org/10.1002/jsid.649]   DOI
2 R. S. Cok, M. Meitl, R. Rotzoll, G. Melnik, A. Fecioru, A. J. Trindade, B. Raymond, S. Bonafede, D. Gomez, T. Moore, C. Prevatte, E. Radauscher, S. Goodwin, P. Hines, and C. A. Bower, J. Soc. Inf. Disp., 25, 589 (2017). [DOI: https://doi.org/10.1002/jsid.610]   DOI
3 B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, Prog. Quantum Electron., 52, 1 (2017). [DOI: https://doi.org/10.1016/j.pquantelec.2017.01.001]   DOI
4 J. H. Lee, A.B.M.H. Islam, T. K. Kim, Y. J. Cha, and J. S. Kwak, Photonics Res., 6, 1049 (2020). [DOI: https://doi.org/10.1364/PRJ.385249]   DOI
5 H. Y. Lin, C. W. Sher, D. H. Hsieh, X. Y. Chen, H.M.P. Chen, T. M. Chen, K. M. Lau, C. H. Chen, C. C. Lin, and H. C. Kuo, Photonics Res., 5, 411 (2017). [DOI: https://doi.org/10.1364/prj.5.000411]   DOI
6 G. Tan, Y. Huang, M. C. Li, S. L. Lee, and S. T. Wu, Opt. Express, 26, 16572 (2018). [DOI: https://doi.org/10.1364/oe.26.016572]   DOI
7 K. T. Lam, S. C. Hung, C. F. Shen, C. H. Liu, Y. X. Sun, and S. J. Chang, Semicond. Sci. Technol., 24, 065002 (2009). [DOI: https://doi.org/10.1088/0268-1242/24/6/065002]   DOI
8 S. X. Jin, J. Li, J. Z. Li, J. Y. Lin, and H. X. Jiang Appl. Phys. Lett., 76, 631 (2000). [DOI: https://doi.org/10.1063/1.125841]   DOI
9 T. Jeong, Inf. Disp., 17, 18 (2016).
10 T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. Huang Chen, W. Guo, H. C. Kuo, and Z. Chen, Appl. Sci., 8, 1557 (2018). [DOI: https://doi.org/10.3390/app8091557]   DOI
11 X. Li, P. W. Bohn, J. Kim, J. O. White, and J. J. Coleman, Appl. Phys. Lett., 76, 3031 (2000). [DOI: https://doi.org/10.1063/1.126569]   DOI
12 H. Jiang and J. Lin, III-Vs Rev., 14, 32 (2001). [DOI: https://doi.org/10.1016/s0961-1290(01)80261-1]   DOI
13 R. A. Mair, K. C. Zeng, J. Y. Lin, H. X. Jiang, B. Zhang, L. Dai, H. Tang, A. Botchkarev, W. Kim, and H. Morkoc, Appl. Phys. Lett., 71, 2898 (1997). [DOI: https://doi.org/10.1063/1.120209]   DOI
14 K. C. Zeng, L. Dai, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 75, 2563 (1999). [DOI: https://doi.org/10.1063/1.125078]   DOI
15 Z. Y. Fan, J. Y. Lin, and H. X. Jiang, J. Phys. D: Appl. Phys., 41, 094001 (2008). [DOI: https://doi.org/10.1088/0022-3727/41/9/094001]   DOI
16 T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, Science, 285, 1905 (1999). [DOI: https://doi.org/10.1126/science.285.5435.1905]   DOI
17 H. J. Park, Y. J. Cha, and J. S. Kwak, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 47 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.1.47]   DOI
18 T. K. Kim, M. U. Cho, J. M. Lee, Y. J. Cha, S. K. Oh, B. Chatterjee, J. H. Ryou, S. Choi, and J. S. Kwak, Phys. Status Solidi A, 215, 1700571 (2018). [DOI: https://doi.org/10.1002/pssa.201700571]   DOI
19 I. Y. Hong, A.B.M.H. Islam, T. K. Kim, Y. J. Cha, and J. S. Kwak, Appl. Surf. Sci., 512, 145698 (2020). [DOI: https://doi.org/10.1016/j.apsusc.2020.145698]   DOI
20 I. Y. Hong, J. H. Lee, S. M. Cho, J. B. So, T. K. Kim, Y. J. Cha, and J. S. Kwak, IEEE Trans. Nanotechnol., 18, 160 (2018). [DOI: https://doi.org/10.1109/TNANO.2018.2876467]   DOI
21 X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J. Shul, L. Zhang, R. Hickman, and J. M. Van Hove, Appl. Phy. Lett., 75, 2569 (1999). [DOI: https://doi.org/10.1063/1.125080]   DOI