DOI QR코드

DOI QR Code

The Variation of Sapphire Substrate Shape of Micro LED Array to Increasing of Light Intensity and Contrast Ratio

Light Intensity 및 명암비 향상을 위한 마이크로 LED의 사파이어 기판 형상 변화 연구

  • Cha, Yu-Jung (Department of Printed Electronics Engineering, Sunchon National University) ;
  • Kwak, Joon Seop (Department of Printed Electronics Engineering, Sunchon National University)
  • Received : 2020.11.10
  • Accepted : 2020.11.20
  • Published : 2021.01.01

Abstract

Micro-LEDs can be applied to various parts of a product. However, it has disadvantages compared to general LEDs in large displays such as low efficiency, intensity, and contrast ratio, among others, owing to their short history of study. The simulations were carried out using ray-tracing software to investigate the change in light intensity and light distribution according to pattern shapes on the sapphire substrate of the flip-chip micro-LED (FC μ-LED) array. Three patterns-concave square patterns, convex square patterns, and Ag coated convex patterns-which existed on the opposite side of FC μ-LEDs (115 ㎛ × 115 ㎛) array, were applied. The intensity of FC μ-LEDs on the center of the receivers depends on the pattern depth with shape. The concave square patterns having FC μ-LEDs arrays show that decreasing intensity as the patterns depth. On the contrary, the convex square patterns having FC μ-LEDs arrays shows that increasing intensity as the patterns depth. In addition, the highest intensity shows that FC μ-LEDs having Ag-coated convex patterns on the opposite side of sapphire lead to a reduction in light crosstalk owing to the Ag film.

Keywords

Acknowledgement

이 논문은 2020년 순천대학교 학술연구비(과제번호: 2020-0185) 공모과제로 연구되었음.

References

  1. T. Jeong, Inf. Disp., 17, 18 (2016).
  2. T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. Huang Chen, W. Guo, H. C. Kuo, and Z. Chen, Appl. Sci., 8, 1557 (2018). [DOI: https://doi.org/10.3390/app8091557]
  3. S. X. Jin, J. Li, J. Z. Li, J. Y. Lin, and H. X. Jiang Appl. Phys. Lett., 76, 631 (2000). [DOI: https://doi.org/10.1063/1.125841]
  4. H. Jiang and J. Lin, III-Vs Rev., 14, 32 (2001). [DOI: https://doi.org/10.1016/s0961-1290(01)80261-1]
  5. R. A. Mair, K. C. Zeng, J. Y. Lin, H. X. Jiang, B. Zhang, L. Dai, H. Tang, A. Botchkarev, W. Kim, and H. Morkoc, Appl. Phys. Lett., 71, 2898 (1997). [DOI: https://doi.org/10.1063/1.120209]
  6. K. C. Zeng, L. Dai, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 75, 2563 (1999). [DOI: https://doi.org/10.1063/1.125078]
  7. X. Li, P. W. Bohn, J. Kim, J. O. White, and J. J. Coleman, Appl. Phys. Lett., 76, 3031 (2000). [DOI: https://doi.org/10.1063/1.126569]
  8. Z. Y. Fan, J. Y. Lin, and H. X. Jiang, J. Phys. D: Appl. Phys., 41, 094001 (2008). [DOI: https://doi.org/10.1088/0022-3727/41/9/094001]
  9. T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, Science, 285, 1905 (1999). [DOI: https://doi.org/10.1126/science.285.5435.1905]
  10. T. K. Kim, M. U. Cho, J. M. Lee, Y. J. Cha, S. K. Oh, B. Chatterjee, J. H. Ryou, S. Choi, and J. S. Kwak, Phys. Status Solidi A, 215, 1700571 (2018). [DOI: https://doi.org/10.1002/pssa.201700571]
  11. I. Y. Hong, A.B.M.H. Islam, T. K. Kim, Y. J. Cha, and J. S. Kwak, Appl. Surf. Sci., 512, 145698 (2020). [DOI: https://doi.org/10.1016/j.apsusc.2020.145698]
  12. I. Y. Hong, J. H. Lee, S. M. Cho, J. B. So, T. K. Kim, Y. J. Cha, and J. S. Kwak, IEEE Trans. Nanotechnol., 18, 160 (2018). [DOI: https://doi.org/10.1109/TNANO.2018.2876467]
  13. H. J. Park, Y. J. Cha, and J. S. Kwak, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 47 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.1.47]
  14. X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J. Shul, L. Zhang, R. Hickman, and J. M. Van Hove, Appl. Phy. Lett., 75, 2569 (1999). [DOI: https://doi.org/10.1063/1.125080]
  15. L. Zhang, F. Ou, W. C. Chong, Y. Chen, and Q. Li, J. Soc. Inf. Disp., 26, 137 (2018). [DOI: https://doi.org/10.1002/jsid.649]
  16. R. S. Cok, M. Meitl, R. Rotzoll, G. Melnik, A. Fecioru, A. J. Trindade, B. Raymond, S. Bonafede, D. Gomez, T. Moore, C. Prevatte, E. Radauscher, S. Goodwin, P. Hines, and C. A. Bower, J. Soc. Inf. Disp., 25, 589 (2017). [DOI: https://doi.org/10.1002/jsid.610]
  17. B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, Prog. Quantum Electron., 52, 1 (2017). [DOI: https://doi.org/10.1016/j.pquantelec.2017.01.001]
  18. J. H. Lee, A.B.M.H. Islam, T. K. Kim, Y. J. Cha, and J. S. Kwak, Photonics Res., 6, 1049 (2020). [DOI: https://doi.org/10.1364/PRJ.385249]
  19. H. Y. Lin, C. W. Sher, D. H. Hsieh, X. Y. Chen, H.M.P. Chen, T. M. Chen, K. M. Lau, C. H. Chen, C. C. Lin, and H. C. Kuo, Photonics Res., 5, 411 (2017). [DOI: https://doi.org/10.1364/prj.5.000411]
  20. G. Tan, Y. Huang, M. C. Li, S. L. Lee, and S. T. Wu, Opt. Express, 26, 16572 (2018). [DOI: https://doi.org/10.1364/oe.26.016572]
  21. K. T. Lam, S. C. Hung, C. F. Shen, C. H. Liu, Y. X. Sun, and S. J. Chang, Semicond. Sci. Technol., 24, 065002 (2009). [DOI: https://doi.org/10.1088/0268-1242/24/6/065002]