• Title/Summary/Keyword: Layout parasitic

Search Result 42, Processing Time 0.029 seconds

Influence of Parasitic Parameters on Switching Characteristics and Layout Design Considerations of SiC MOSFETs

  • Qin, Haihong;Ma, Ceyu;Zhu, Ziyue;Yan, Yangguang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1255-1267
    • /
    • 2018
  • Parasitic parameters have a larger influence on Silicon Carbide (SiC) devices with an increase of the switching frequency. This limits full utilization of the performance advantages of the low switching losses in high frequency applications. By combining a theoretical analysis with a experimental parametric study, a mathematic model considering the parasitic inductance and parasitic capacitance is developed for the basic switching circuit of a SiC MOSFET. The main factors affecting the switching characteristics are explored. Moreover, a fast-switching double pulse test platform is built to measure the individual influences of each parasitic parameters on the switching characteristics. In addition, guidelines are revealed through experimental results. Due to the limits of the practical layout in the high-speed switching circuits of SiC devices, the matching relations are developed and an optimized layout design method for the parasitic inductance is proposed under a constant length of the switching loop. The design criteria are concluded based on the impact of the parasitic parameters. This provides guidelines for layout design considerations of SiC-based high-speed switching circuits.

Performance Optimization Study of FinFETs Considering Parasitic Capacitance and Resistance

  • An, TaeYoon;Choe, KyeongKeun;Kwon, Kee-Won;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.525-536
    • /
    • 2014
  • Recently, the first generation of mass production of FinFET-based microprocessors has begun, and scaling of FinFET transistors is ongoing. Traditional capacitance and resistance models cannot be applied to nonplanar-gate transistors like FinFETs. Although scaling of nanoscale FinFETs may alleviate electrostatic limitations, parasitic capacitances and resistances increase owing to the increasing proximity of the source/drain (S/D) region and metal contact. In this paper, we develop analytical models of parasitic components of FinFETs that employ the raised source/drain structure and metal contact. The accuracy of the proposed model is verified with the results of a 3-D field solver, Raphael. We also investigate the effects of layout changes on the parasitic components and the current-gain cutoff frequency ($f_T$). The optimal FinFET layout design for RF performance is predicted using the proposed analytical models. The proposed analytical model can be implemented as a compact model for accurate circuit simulations.

Improvement of Time-Delay of the Analog Viterbi Decoder through Minimizing Parasitic Capacitors in Layout Design (아날로그 비터비 디코더에 있어서 기생 cap성분 최소화 layout 설계에 의한 신호전파 지연 개선)

  • Kim, In-Cheol;Kim, Hyun-Jung;Kim, Hyong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.196-198
    • /
    • 2007
  • A circuit design technique to reduce the propagation time is proposed for the analog parallel processing-based Viterbi decoder. The analog Viterbi decoder implements the function of the conventional digital Viterbi decoder utilizing the analog parallel processing circuit technology. The decoder is for the PR(1.2,2.1) signal of DVD. The benefits are low power consumption and less silicon occupation. In this paper, a propagation time reduction technique is proposed by minimizing the parasitic capacitance components in the layout design of the analog Viterbi decoder. The propagation time reduction effect of the proposed technique has been shown via HSPICE simulation.

  • PDF

CMOS Rectifier for Wireless Power Transmission Using Multiplier Configuration (Multiplier 설정을 통한 무선 전력 전송 용 CMOS 정류 회로)

  • Jeong, Nam Hwi;Bae, Yoon Jae;Cho, Choon Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.56-62
    • /
    • 2013
  • We present a rectifier for wireless power transmission using multiplier configuration in layout for MOSFETs which works at 13.56 MHz, designed to fit in CMOS process where conventionally used diodes are replaced with the cross-coupled MOSFETs. Full bridge rectifier structure without comparators is employed to reduce current consumption and to be working up to higher frequency. Multiplier configuration designed in layout reduces time delay originated from parasitic series resistance and shunt capacitance at each finger due to long connecting layout, leading to fast transition from on-state to off-state cross-coupled circuit structure and vice versa. The power conversion efficiency is significantly increased due to this fast transition time. The rectifier is fabricated in $0.11{\mu}m$ CMOS process, RF to DC power conversion efficiency is measured as 86.4% at the peak, and this good efficiency is maintained up to 600 MHz, which is, to our best knowledge, the highest frequency based on cross-coupled configuration.

A Circuit Extractor Using the Quad Tree Structure (Quad Tree 구조를 이용한 회로 추출기)

  • 이건배;정정화
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.101-107
    • /
    • 1988
  • This paper proposes a circuit extractor which extracts a netlist from the CIF input file cntaining the layout mask artwork informations. The circuit extractor extracts transistors and their interconnections, and calculates circuit parameter such as parasitic resistance and parasitic capacitance from the mask informations. When calculating the parasitic resistance, we consider the current flow path to reduce the errors caused by the resistance approximation. Similarly, we consider the coupling capacitance which has an effect on the circuit characteristics, when the parasitic capacitances are calculated. Therefore, using these parameter values as an input to circuit simulation, the circuit characteristics such as delay time can be estimated accurately. The presented circuit extraction algorithm uses a multiple storage quad tree as a data sturucture for storing and searching the 2-dimensional geometric data of mask artwork. Also, the proposed algorithm is technologically independent to work across a wide range of MOS technologies without any change in the algorihm.

  • PDF

Parasitic Inductance Reduction Design Method of Vertical Lattice Loop Structure for Stable Driving of GaN HEMT (GaN HEMT의 안정적 구동을 위한 수직 격자 루프 구조의 기생 인덕턴스 저감 설계 기법)

  • Yang, Si-Seok;Soh, Jae-Hwan;Min, Sung-Soo;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.195-203
    • /
    • 2020
  • This paper presents a parasitic inductance reduction design method for the stable driving of GaN HEMT. To reduce the parasitic inductance, we propose a vertical lattice loop structure with multiple loops that is not affected by the GaN HEMT package. The proposed vertical lattice loop structure selects the reference loop and designs the same loop as the reference loop by layering. The design reverses the current direction of adjacent current paths, increasing magnetic flux cancellation to reduce parasitic inductance. In this study, we validate the effectiveness of the parasitic inductance reduction method of the proposed vertical lattice loop structure.

Decrease of Parasitic Capacitance for Improvement of RF Performance of Multi-finger MOSFETs in 90-nm CMOS Technology

  • Jang, Seong-Yong;Kwon, Sung-Kyu;Shin, Jong-Kwan;Yu, Jae-Nam;Oh, Sun-Ho;Jeong, Jin-Woong;Song, Hyeong-Sub;Kim, Choul-Young;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.312-317
    • /
    • 2015
  • In this paper, the RF characteristics of multi-finger MOSFETs were improved by decreasing the parasitic capacitance in spite of increased gate resistance in a 90-nm CMOS technology. Two types of device structures were designed to compare the parasitic capacitance in the gate-to-source ($C_{gs}$) and gate-to-drain ($C_{gd}$) configurations. The radio frequency (RF) performance of multi-finger MOSFETs, such as cut-off frequency ($f_T$) and maximum-oscillation frequency ($f_{max}$) improved by approximately 10% by reducing the parasitic capacitance about 8.2% while maintaining the DC performance.

Optimization of 70nm nMOSFET Performance using gate layout (게이트 레이아웃을 이용한 70nm nMOSFET 초고주파 성능 최적화)

  • Hong, Seung-Ho;Park, Min-Sang;Jung, Sung-Woo;Kang, Hee-Sung;Jeong, Yoon-Ha
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.581-582
    • /
    • 2006
  • In this paper, we investigate three different types of multi-fingered layout nMOSFET devices with varying $W_f$(unit finger width) and $N_f$(number of finger). Using layout modification, we improve $f_T$(current gain cutoff frequency) value of 15GHz without scaling down, and moreover, we decrease $NF_{min}$(minimum noise figure) by 0.23dB at 5GHz. The RF noise can be reduced by increasing $f_T$, choosing proper finger width, and reducing the gate resistance. For the same total gate width using multi-fingered layout, the increase of finger width shows high $f_T$ due to the reduced parasitic capacitance. However, this does not result in low $NF_{min}$ since the gate resistance generating high thermal noise becomes larger under wider finger width. We can obtain good RF characteristics for MOSFETs by using a layout optimization technique.

  • PDF

Implementation and Problem Analysis of Phase Shifted dc-dc Full Bridge Converter with GaN HEMT (Cascode GaN HEMT를 적용한 위상 천이 dc-dc 컨버터의 구현 및 문제점 분석)

  • Joo, Dong-Myoung;Kim, Dong-Sik;Lee, Byoung-Kuk;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.558-565
    • /
    • 2015
  • Gallium nitride high-electron mobility transistor (GaN HEMT) is the strongest candidate for replacing Si MOSFET. Comparing the figure of merit (FOM) of GaN with the state-of-the-art super junction Si MOSFET, the FOM is much better because of the wide band gap characteristics and the heterojunction structure. Although GaN HEMT has many benefits for the power conversion system, the performance of the power conversion system with the GaN HEMT is sensitive because of its low threshold voltage ($V_{th}$) and even lower parasitic capacitance. This study examines the characteristics of a phase-shifted full-bridge dc-dc converter with cascode GaN HEMT. The problem of unoptimized dead time is analyzed on the basis of the output capacitance of GaN HEMT. In addition, the printed circuit board (PCB) layout consideration is analyzed to reduce the negative effects of parasitic inductance. A comparison of the experimental results is provided to validate the dead time and PCB layout analysis for a phase-shifted full-bridge dc-dc converter with cascode GaN HEMT.

Circuit Design of Fingerprint Authentication for Smart Card Application (스마트카드의 인증을 위한 지문인식 회로 설계)

  • 정승민;김정태
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.249-252
    • /
    • 2003
  • This paper propose an advanced circuit for fingerprint sensor signal processing. We increased the voltage between ridge and valley by modifying the parasitic capacitance eliminating circuit of sensor plate. The analog to comparator was designed for comparing the sensor signal voltage with the reference signal voltage. We also propose an exective isolation strategy for removing noise and signal coupling of each sensor pixel. The 128$\times$144 pixel fingerprint sensor circuit was designed and simulated, and the layout was performed.

  • PDF