• Title/Summary/Keyword: Large display devices

Search Result 164, Processing Time 0.024 seconds

The Study of Photosensitive Polyimide for Organic Electroluminescence (광반응성 폴리이미드를 이용한 유기전기발광소자에 관한 연구)

  • Rho, Sok-Won;Shin, Dong-Myung;Shon, Byoung-Choung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.21-25
    • /
    • 1998
  • Organic-based electroluminescent devices have attracted lots of interests because of their possible application as a large-area flat panel display. Polyimides have been used for photo-alignment in LCD(Liquid Crystal Display). However, the devices used in this study were fabricated with polyimide doped with N,N'-Diphenyl-N,N'-di(m-tolyl)-benzidine(TPD) (3, 10, 30wt%) for electroluminescent hole tranforting layer(EHTL). The photochemical and physical properties of EHTL was studied. The film thicknesses were reduced under illumination with UV light. Polyimide films doped with TPD(3wt%) was irradiated and the electrical properties of the films were studied.

The Analysis of p-MOSFET Performance Degradation due to BF2 Dose Loss Phenomena

  • Lee, Jun-Ha;Lee, Hoong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Continued scaling of MOS devices requires the formation of the ultra shallow and very heavily doped junction. The simulation and experiment results show that the degradation of pMOS performance in logic and SRAM pMOS devices due to the excessive diffusion of the tail and a large amount of dose loss in the extension region. This problem comes from the high-temperature long-time deposition process for forming the spacer and the presence of fluorine which diffuses quickly to the $Si/SiO_{2}$ interface with boron pairing. We have studied the method to improve the pMOS performance that includes the low-energy boron implantation, spike annealing and device structure design using TCAD simulation.

Bandgap Voltage Reference Circuit Design Technology Suitable for Driving Large OLED Display Panel (대형 OLED 디스플레이 패널 구동에 적합한 밴드갭 레퍼런스 회로 설계 및 결과)

  • Moon, Jong Il;Cho, Sang Jun;Cho, Eou Sik;Nam, Chul;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.53-56
    • /
    • 2018
  • In this paper, a CMOS bandgap voltage reference that is not sensitive to changes in the external environment is presented. Large OLED display panels need high supply voltage. MOSFET devices with high voltage are sensitive to the output voltage due to the channel length modulation effect. The self-cascode circuit was applied to the bandgap reference circuit. Simulation results show that the maximum output voltage change of the basic circuit is 77mV when the supply voltage is changed from 10.5V to 13.5V, but the proposed circuit change is improved to 0.0422mV. The improved circuit has a low temperature coefficient of $9.1ppm/^{\circ}C$ when changing the temperature from $-40^{\circ}C$ to $140^{\circ}C$. Therefore, the proposed circuit can be used as a reference voltage source for circuits that require a high supply voltage.

Study about high temperature operating test result For Thin Film-Transistor Electro Phoretic Display on plastic

  • Kim, Sun-Young;Lee, Woo-Jae;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.962-964
    • /
    • 2007
  • A 14.1-inch reflective type Thin Film Transistor-Electric Phoretic Display was developed at the esolution of 1280 x 900 lines on plastic substrate. All of the processes of TFT were carried out below $100\;^{\circ}C$ on PES plastic films. The process conditions of TFT were optimized for large area TFT-LCD on plastic substrate. At $60^{\circ}C$ high temperature during 160hours, TFT does not delaminate and IV characteristic is also satisfied.

  • PDF

Silicon-based 0.69-inch AMOEL Microdisplay with Integrated Driver Circuits

  • Na, Young-Sun;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • Silicon-based 0.69-inch AMOEL microdisplay with integrated driver and timing controller circuits for microdisplay applications has been developed using 0.35 ${\mu}m$ l-poly 4-metal standard CMOS process with 5 V CMOS devices and CMP (Chemical Mechanical Polishing) technology. To reduce the large data programming time consumed in a conventional current programming pixel circuit technique and to achieve uniform display, de-amplifying current mirror pixel circuit and the current-mode data driver circuit with threshold roltage compensation are proposed. The proposed current-mode data driver circuit is inherently immune to the ground-bouncing effect. The Monte-Carlo simulation results show that the proposed current-mode data driver circuit has channel-to-channel non-uniformity of less than ${\pm}$0.6 LSB under ${\pm}$70 mV threshold voltage variaions for both NMOS and PMOS transistors, which gives very good display uniformity.

Color Tuning of OLEDs Using the Ir Complexes of White Emission by Adjusting the Band Gap of Host Materials

  • Seo, Ji-Hyun;Kim, In-June;Seo, Ji-Hoon;Hyung, Gun-Woo;Kim, Young-Sik;Kim, Young-Kwan
    • Journal of Information Display
    • /
    • v.9 no.2
    • /
    • pp.18-21
    • /
    • 2008
  • We report on white organic light-emitting diodes (WOLEDs) based on single white dopants, $Ir(pq)_2$($F_2$-ppy) and $Ir(F_2-ppy)_2$(pq), where $F_2$-ppy and pq are 2-(2,4-difluorophenyl) pyridine and 2-phenylquinoline, respectively. The similar phosphorescent lifetime of two ligands lead to luminescence emission in two ligands simultaneously. However, the emission color of the devices was reddish, because the energy was not transferred efficiently from the 4,4,N,N'-dicarbazolebiphenyl (CBP) to the $F_2$-ppy ligand, due to the small band gap of the CBP. Accordingly, we used 1,4-phenylenesis(triphenylsilane) (UGH2) with a large band gap, instead of CBP as the host material. As a result, it was possible to adjust the emission color by the host material. The luminous efficiency of the device with $Ir(F_2-ppy)_2$(pq) doped in UGH2 was about 11 cd/A at 0.06 cd/$m^2$.

Flexible Low Power Consumption Active-Matrix OLED Displays

  • Hack, Mike;Chwang, Anna;Hewitt, Richard;Brown, Julie;Lu, JengPing;Shih, ChinWen;Ho, JackSon;Street, R.A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.609-613
    • /
    • 2005
  • Advanced mobile communication devices require a bright, high information content display in a small, light-weight, low power consumption package. In this paper we will outline our progress towards developing such a low power consumption active-matrix flexible OLED ($FOLED^{TM}$) display. Our work in this area is focused on three critical enabling technologies. The first is the development of a high efficiency long-lived phosphorescent OLED ($PHOLED{TM}$) device technology, which has now proven itself to be capable of meeting the low power consumption performance requirements for mobile display applications. Secondly, is the development of flexible active matrix backplanes, and for this our team are employing poly-Si TFTs formed on metal foil substrates as this approach represents an attractive alternative to fabricating poly-Si TFTs on plastic for the realization of first generation flexible active matrix OLED displays. Unlike most plastics, metal foil substrates can withstand a large thermal load and do not require a moisture and oxygen permeation barrier. Thirdly, the key to reliable operation is to ensure that the organic materials are fully encapsulated in a package designed for repetitive flexing. We also present progress in operational lifetime of encapsulated T-PHOLED pixels on planarized metal foil and discuss PHOLED encapsulation strategy.

  • PDF

Implementation of the FAT32 File System using PLC and CF Memory (PLC와 CF 메모리를 이용한 FAT32 파일시스템 구현)

  • Kim, Myeong Kyun;Yang, Oh;Chung, Won Sup
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.85-91
    • /
    • 2012
  • In this paper, the large data processing and suitable FAT32 file system for industrial system using a PLC and CF memory was implemented. Most of PLC can't save the large data in user data memory. So it's required to the external devices of CF memory or NAND flash memory. The CF memory is used in order to save the large data of PLC system. The file system using the CF memory is NTFS, FAT, and FAT32 system to configure in various ways. Typically, the file system which is widely used in industrial data storage has been implemented as modified FAT32. The conventional FAT 32 file system was not possible for multiple writing and high speed data accessing. The proposed file system was implemented by the large data processing module can be handled that the files are copied at the 40 bytes for 1msec speed logging and creating 8 files at the same time. In a sudden power failure, high reliability was obtained that the problem was solved using a power fail monitor and the non-volatile random-access memory (NVSRAM). The implemented large data processing system was applied the modified file system as FAT32 and the good performance and high reliability was showed.

A Study on the Laser Direct Imaging for FPD ( I ) (평판 디스플레이용 Laser Direct Imaging에 관한 연구( I ))

  • Kang, H.S.;Kim, K.R.;Kim, H.W.;Hong, S.K.
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2005.11a
    • /
    • pp.37-41
    • /
    • 2005
  • When screen size of the Flat Panel Display (FPD) becomes larger, the traditional photo-lithography using photomasks and UV lamps might not be possible to make patterns on Photo Resist (PR) material due to limitation of the mask size. Though the maskless photo-lithography using UV lasers and scanners had been developed to implement large screen display, it was very slow to apply the process for mass-production systems. The laser exposure system using 405 nm semi-conductor lasers and Digital Micromirror Devices (DMD) has been developed to overcome above-mentioned problems and make more than 100 inches FPD devices. It makes very fine patterns for full HD display and exposes them very fast. The optical engines which contain DMD, Micro Lens Array (MLA) and projection lenses are designed for 10 to 50 ${\mu}m$ bitmap pattern resolutions. The test patterns for LCD and PDP displays are exposed on PR and Dry Film Resists (DFR) which are coated or laminated on some specific substrates and developed. The fabricated edges of the sample patterns are well-defined and the results are satisfied with tight manufacturing requirements.

  • PDF

Electrostatic Suspension System of Glass Panels using Relay Feedback Control (릴레이 제어법을 이용한 유리패널의 정전부상에 관한 연구)

  • Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.71-79
    • /
    • 2008
  • In the manufacture of flat panel display devices, there is a strong demand for contactless glass panel handling devices that can manipulate a glass panel without contaminating or damaging it. To fulfill this requirement, an electrostatic suspension device far glass panels where the glass panel is supported by electrostatic forces without any mechanical contact is proposed. To implement the system with low cost and compactness, switched-voltage control scheme that is based on the relay feedback control is utilized. Relay feedback control method deploys only a single high-voltage power supply that can deliver a DC voltage of positive and/or negative polarity and thus high voltage amplifiers that are costly and bulky are not needed any more. It is shown that despite the inherent limit cycle property of the relay feedback based control, an excellent performance in vibration suppression is attained due to the presence of a relatively large squeeze film damping originating from the electrodes and levitated object. Using this scheme, a $100{\times}100mm^2$ glass panel was levitated stably with airgap variation decreasing down to $1\;{\mu}m$ at an airgap of $100\;{\mu}m$.