DOI QR코드

DOI QR Code

The Analysis of p-MOSFET Performance Degradation due to BF2 Dose Loss Phenomena

  • Lee, Jun-Ha (Information Display Research Center, Department of Computer System Engineering, Sangmyung University) ;
  • Lee, Hoong-Joo (Information Display Research Center, Department of Computer System Engineering, Sangmyung University)
  • Published : 2005.02.01

Abstract

Continued scaling of MOS devices requires the formation of the ultra shallow and very heavily doped junction. The simulation and experiment results show that the degradation of pMOS performance in logic and SRAM pMOS devices due to the excessive diffusion of the tail and a large amount of dose loss in the extension region. This problem comes from the high-temperature long-time deposition process for forming the spacer and the presence of fluorine which diffuses quickly to the $Si/SiO_{2}$ interface with boron pairing. We have studied the method to improve the pMOS performance that includes the low-energy boron implantation, spike annealing and device structure design using TCAD simulation.

Keywords

References

  1. S. Scalese, M. Italia, A. La Magna, G. Mannino, V Privitera, M. Bersani, D. Giubertoni, M. Barozzi, S. Solmi, and P. Pichler, 'Diffusion and electrical activation of indium in silicon', J. Appl. Phys., Vol. 93, No. 12, p. 9773, 2003
  2. S. Solmi, 'Effects of donor concentration on transient enhanced diffusion of boron in silicon', Journal of Applied Physics, Vol. 87, No.8, p. 3696, 2000
  3. H. H. Vuong, C. S. Rafferty, S. A. Eshraghi, J. L. Lentz, P. M. Zeitzoff, M. R. Pinto, and S. J. Hillenius, 'Effects of oxide interface traps and transient enhanced diffusion on the process modeling of PMOS devices', IEEE Trans. Electron Devices, Vol. 43, No.7, p. 1144, 1996
  4. L. Adam, M. E. Law, O. Dokumaci, and S. Hegde, 'A Physical Model for Implanted Nitrogen Diffusion and Its Effect on Oxide Growth', presented at the International Electron Devices Meeting, San Francisco, 2000
  5. H. J. Gossmann, G. H. Gilmer, C. S. Rafferty, F. C. Unterwald, T. Boone, J. M. Poate, H. S. Luftman, and W. Frank, 'Determination of Si self-interstitial diffusivities from the oxidation-enhanced diffusion in B doping-superlattices: The influence of the marker layers', J. Appl. Phys., Vol. 77, No.5, p. 1948,1995
  6. Y. S. Kim, 'Study of sol-gel prepared phosphosilicate glass-ceramic for low temperature phosphorus diffusion into silicon', Trans. EEM, Vol. 2, No.2, p. 32, 2001
  7. Michael Y. Kwong, Chang-Hoon Choi, Reza Kasnavi, Peter Griffin, and Robert W. Dutton, 'Series resistance calculation for source/drain extension regions using 2-D device simulation', IEEE Trans. On Electron Devices, Vol. 49, No.7, p. 1219, 2002 https://doi.org/10.1109/TED.2002.1013279
  8. J. D. Plummer, 'Issues in Ultra Shallow Junction Fabrication : Dopant Activation and Defect Kinetics', Ultra Shallow Junctions, p. 15, 2001
  9. C. S. Kang, 'Characteristics of trap in the thin silicon oxides with nano structure', Trans. EEM, Vol. 4, No.6, p. 32, 2003
  10. D. K. Schroder, 'Semiconductor Material and Device Characterization Second Edition', John Wiley & Sons, Inc., p. 124, 1998
  11. W. C. Jung, 'A study of defect distribution and profiles of MeV implanted phosphorus in silicon', J. of KIEEME(in Korean) Vol. 10, No.9, p. 881, 1997
  12. Reza Kasnavi, 'A comparative study of dose loss and diffusion for B and BF2 implants', Mat. Res. Soc. Symp., Vol. 610, p. B4.3.l, 2000
  13. Daniel F. Downey, Judy W. Chow, Emi Ishida, and Kevin S. Jones, 'Effect of fluorine on the diffusion of boron in ion implanted Si', Applied Physics Letters, Vol. 73, No.9, p. 1263, 1998
  14. A. Shims, 'Investigation of a Model for the Segregation and Pile-up of Boron at the $SiO_2/Si$ Interface During the Formation of Ultra-shallow p+Junctions', IEDM 2000 digest paper, p. 124, 2000
  15. A. F. Saavedra, K. S. Jones, L. Radic, M. E. Law, and K. K. Chan, 'Concentration dependence of boron-interstitial cluster (BIC) formation in siliconon- insulator(SOI)', Mat. Res. Soc. Symp., Vol. 810, p. C8.11.1, 2004