• 제목/요약/키워드: Lagrangian equation

검색결과 212건 처리시간 0.024초

Numerical prediction for the performance of a floating-type breakwater by using a two-dimensional particle method

  • Lee, Byung-Hyuk;Hwang, Sung-Chul;Nam, Jung-Woo;Park, Jong-Chun
    • International Journal of Ocean System Engineering
    • /
    • 제1권1호
    • /
    • pp.37-45
    • /
    • 2011
  • The nonlinear free-surface motions interacting with a floating body were investigated using the Moving Particle Semi-implicit (MPS) method proposed by Koshizuka and Oka [6] for incompressible flow. In the numerical method, more realistic Lagrangian moving particles were used for solving the flow field instead of the Eulerian approach with a grid system. Therefore, the convection terms and time derivatives in the Navier-Stokes equation can be calculated more directly, without any numerical diffusion, instabilities, or topological failure. The MPS method was applied to a numerical simulation of predicting the efficiency of floating-type breakwater interacting with waves.

Eulerian-Lagrangian Hybrid Numerical Method for the Longitudinal Dispersion Equation

  • Jun, Kyung-Soo;Lee, Kil-Seong
    • Korean Journal of Hydrosciences
    • /
    • 제5권
    • /
    • pp.85-97
    • /
    • 1994
  • A hybrid finite difference method for the longitudinal dispersion equation, which is based on combining the Holly-Preissmann scheme with fifth-degree Hermite interpolating polynomial and the generalized Crank-Nicholson scheme, is described and comparatively evaluated with other characteristics-based numerical methods. Longitudinal dispersion of an instantaneously-loaded pollutant source is simulated, and computational results are compared with the exact solution. The present method is free from wiggles regardless of the Courant number, and exactly reproduces the location of the peak concentration. Overall accuracy of the computation increases for smaller value of the weighting factor, $\theta$of the model. Larger values of $\theta$ overestimates the peak concentration. Smaller Courant number yields better accuracy, in general, but the sensitivity is very low, especially when the value of $\theta$ is small. From comparisons with the hybrid method using cubic interpolating polynomial and with splitoperator methods, the present method shows the best performance in reproducing the exact solution as the advection becomes more dominant.

  • PDF

Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite

  • Zaid, Mohammad;Sadique, Md. Rehan;Alam, M. Masroor;Samanta, Manojit
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.245-259
    • /
    • 2020
  • Tunnels have become an indispensable part of metro cities. Blast resistance design of tunnel has attracted the attention of researchers due to numerous implosion event. Present paper deals with the non-linear finite element analysis of rock tunnel having shear zone subjected to internal blast loading. Abaqus Explicit schemes in finite element has been used for the simulation of internal blast event. Structural discontinuity i.e., shear zone has been assumed passing the tunnel cross-section in the vertical direction and consist of Highly Weathered Granite medium surrounding the tunnel. Mohr-Coulomb constitutive material model has been considered for modelling the Highly Weathered Granite and the shear zone material. Concrete Damage Plasticity (CDP), Johnson-Cook (J-C), Jones-Wilkins-Lee (JWL) equation of state models are used for concrete, steel reinforcement and Trinitrotoluene (TNT) simulation respectively. The Coupled-Eulerian-Lagrangian (CEL) method of modelling for TNT explosive and air inside the tunnel has been adopted in this study. The CEL method incorporates the large deformations for which the traditional finite element analysis cannot be used. Shear zone orientations of 0°, 15°, 30°, 45°, 60°, 75° and 90°, with respect to the tunnel axis are considered to see their effect. It has been concluded that 60° orientation of shear zone presents the most critical situation.

Eulerian-Lagrangian 혼합모형에 의한 종확산 방정식의 수치해법 (An Eulerian-Lagrangian Hybrid Numerical Method for the Longitudinal Dispersion Equation)

  • 전경수;이길성
    • 물과 미래
    • /
    • 제26권3호
    • /
    • pp.137-148
    • /
    • 1993
  • 종확산 방정식에 대한 유한차분 모형으로서, 5차의 보간다항식을 사용한 Holly-Preissmann 기법과 Generalized Crank-Nicholson 기법을 결합한 혼합모형을 개발하였다. 순간적으로 부하된 오염원의 종확산문제에 본 모형 및 특성곡선을 고려한 다른 수치기법들을 적용하여 정확해와 비교하였다. 보 모형에 의한 계산결과, Courant 수에 관계없이 수치진동이 전혀 발생하지 않았으며, 최대농도 발생지점도 정확해와 일치하였다. 모형의 적용에 있어서 시간가중치 $\theta$의 값이 작을수록 계산의 정확성이 전반적으로 향상되는 것으로 나타났으며, $\theta$의 값을 크게 할수록 최대농도값을 과대평가하는 경향을 보였다. 전반적으로 Courant 수가 작을수록 정확한 계산결과를 나타내고 있으나 그 민감도는, 특히 $\theta$의 값이 작을수록, 매우 작게 나타났다. 3차의 보간다항식을 사용하는 혼합모형 및 연산자 분리방법들과의 비교결과, 이송항이 지배적일수록 본 모형이 정확해와 가장 근사한 계산결과를 보임을 알 수 있었다.

  • PDF

Energy-Efficient Resource Allocation for Application Including Dependent Tasks in Mobile Edge Computing

  • Li, Yang;Xu, Gaochao;Ge, Jiaqi;Liu, Peng;Fu, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권6호
    • /
    • pp.2422-2443
    • /
    • 2020
  • This paper studies a single-user Mobile Edge Computing (MEC) system where mobile device (MD) includes an application consisting of multiple computation components or tasks with dependencies. MD can offload part of each computation-intensive latency-sensitive task to the AP integrated with MEC server. In order to accomplish the application faultlessly, we calculate out the optimal task offloading strategy in a time-division manner for a predetermined execution order under the constraints of limited computation and communication resources. The problem is formulated as an optimization problem that can minimize the energy consumption of mobile device while satisfying the constraints of computation tasks and mobile device resources. The optimization problem is equivalently transformed into solving a nonlinear equation with a linear inequality constraint by leveraging the Lagrange Multiplier method. And the proposed dual Bi-Section Search algorithm Bi-JOTD can efficiently solve the nonlinear equation. In the outer Bi-Section Search, the proposed algorithm searches for the optimal Lagrangian multiplier variable between the lower and upper boundaries. The inner Bi-Section Search achieves the Lagrangian multiplier vector corresponding to a given variable receiving from the outer layer. Numerical results demonstrate that the proposed algorithm has significant performance improvement than other baselines. The novel scheme not only reduces the difficulty of problem solving, but also obtains less energy consumption and better performance.

종확산 방정식에 대한 Eulerian-Lagrangian 연산자 분리방법 (Eulerian-Lagrangian Split-Operator Method for the Longitudinal Dispersion Equation)

  • 전경수;이길성
    • 대한토목학회논문집
    • /
    • 제14권1호
    • /
    • pp.131-141
    • /
    • 1994
  • 특성곡선을 고려한 세가지 연산자 분리방법을 오염원의 종확산 문제에 적용하여, 그 결과를 Eulerian 기법들의 계산결과와 비교하였다. 연산자 분리방법의 이송방정식에 대한 수치 기법들로는 generalized upwind, two-point fourth-order 및 sixth-order Holly-Preissmann 기법들을 각각 적용하였으며, 확산 방정식에 대한 수치기법으로는 Crank-Nicholson 기법을 적용하였다. Holly-Preissmann 기법을 사용하는 연산자 분리방법들이 Eulerian 기법들에 비하여 매우 정확한 계산결과를 나타내었다. Eulerian 기법들의 경우에는 이송항의 근사방법으로서 중앙차분을 취하는 기법들은 수치진동을, 후방차분을 취하는 기법들은 수치분산을 각각 보였으며, 이러한 현상들은 종확산계수의 값이 작을수록 더욱 뚜렷하게 나타났다.

  • PDF

A dual approach to perform geometrically nonlinear analysis of plane truss structures

  • Habibi, AliReza;Bidmeshki, Shaahin
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.13-25
    • /
    • 2018
  • The main objective of this study is to develop a dual approach for geometrically nonlinear finite element analysis of plane truss structures. The geometric nonlinearity is considered using the Total Lagrangian formulation. The nonlinear solution is obtained by introducing and minimizing an objective function subjected to displacement-type constraints. The proposed method can fully trace the whole equilibrium path of geometrically nonlinear plane truss structures not only before the limit point but also after it. No stiffness matrix is used in the main approach and the solution is acquired only based on the direct classical stress-strain formulations. As a result, produced errors caused by linearization and approximation of the main equilibrium equation will be eliminated. The suggested algorithm can predict both pre- and post-buckling behavior of the steel plane truss structures as well as any arbitrary point of equilibrium path. In addition, an equilibrium path with multiple limit points and snap-back phenomenon can be followed in this approach. To demonstrate the accuracy, efficiency and robustness of the proposed procedure, numerical results of the suggested approach are compared with theoretical solution, modified arc-length method, and those of reported in the literature.

가상경계법을 적용한 2차원 미생물 이동에 관한 수치연구 (NUMERICAL SIMULATION OF TWO-DIMENSIONAL MICROORGANISM LOCOMOTION USING THE IMMERSED BOUNDARY METHOD)

  • 란지트;서용권;강상모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.164-169
    • /
    • 2009
  • Study on swimming of microorganisms like, sperm motility, cilia beating, bacterial flagellar propulsion has found immense significance in the field of biological fluiddynamics. Because of the complexity involved, it is challenging for the researchers to model such problems. Immersed boundary method has proved its efficacy in the field of biological fluiddynamics, The present work aims at performing a numerical study on the microorganism locomotion using the immersed boundary method proposed by Peskin[1]. A two-dimensional model of the microorganism is modeled as thin elastic filament described as a sine wave. The neutrally buoyant organism undergoing deformations is immersed in a viscous and incompressible fluid. The fluid quantities are described using Eulerian coordinates and the immersed body is represented by Lagrangian coordinates. The Eulerian and Lagrangian variables are connected by the Dirac delta function. The Navier-Stokes equations governing the fluid flow are solved using the fractional step method on a staggered Cartesian grid system. The developed numerical code in FORTRAN will be validated by comparing the numerical results with the available results.

  • PDF

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

SPH법을 이용한 해안에서의 2차원 비선형파 수치시뮬레이션 (Numerical Simulation of Two-dimensional Nonlinear Waves on Beaches Using a Smoothed Particle Hydrodynamics Method)

  • 김철호;이영길;정광열
    • 대한조선학회논문집
    • /
    • 제47권4호
    • /
    • pp.525-532
    • /
    • 2010
  • In this paper, wave breakers which occur in two dimensional coasts are simulated using a SPH(Smoothed Particle Hydrodynamics) method which represents the movement of fluidic physical volume with particles. As continuative fluid is approximated to the particles, the simulations are performed using fully Lagrangian method without any grid system. Two-dimensional Navier-Stokes equations and continuity equation are used for the numerical simulations. To generate incident waves, a piston type wavemaker is employed. The accuracy of the wave which is numerically generated by the wavemaker is verified by comparing with analytical results. The computations are carried out with various wave heights and slopes. The wave patterns generated through the numerical simulations are compared with several existing experimental and computational results. Agreement between the experimental data and the computation results is comparatively good. Also, the breaker depth index and the breaker height index from the present calculations are compared with the existing experimental results, and the tendency is very similar.