Browse > Article
http://dx.doi.org/10.12989/gae.2020.23.3.245

Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite  

Zaid, Mohammad (Department of Civil Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University)
Sadique, Md. Rehan (Department of Civil Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University)
Alam, M. Masroor (Department of Civil Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University)
Samanta, Manojit (CSIR-Central Building Research Institute)
Publication Information
Geomechanics and Engineering / v.23, no.3, 2020 , pp. 245-259 More about this Journal
Abstract
Tunnels have become an indispensable part of metro cities. Blast resistance design of tunnel has attracted the attention of researchers due to numerous implosion event. Present paper deals with the non-linear finite element analysis of rock tunnel having shear zone subjected to internal blast loading. Abaqus Explicit schemes in finite element has been used for the simulation of internal blast event. Structural discontinuity i.e., shear zone has been assumed passing the tunnel cross-section in the vertical direction and consist of Highly Weathered Granite medium surrounding the tunnel. Mohr-Coulomb constitutive material model has been considered for modelling the Highly Weathered Granite and the shear zone material. Concrete Damage Plasticity (CDP), Johnson-Cook (J-C), Jones-Wilkins-Lee (JWL) equation of state models are used for concrete, steel reinforcement and Trinitrotoluene (TNT) simulation respectively. The Coupled-Eulerian-Lagrangian (CEL) method of modelling for TNT explosive and air inside the tunnel has been adopted in this study. The CEL method incorporates the large deformations for which the traditional finite element analysis cannot be used. Shear zone orientations of 0°, 15°, 30°, 45°, 60°, 75° and 90°, with respect to the tunnel axis are considered to see their effect. It has been concluded that 60° orientation of shear zone presents the most critical situation.
Keywords
rock; tunnel; blast; abaqus; finite element method; coupled Eulerian Lagrangian; Jones Wilkins Lee-equation of state; granite;
Citations & Related Records
Times Cited By KSCI : 32  (Citation Analysis)
연도 인용수 순위
1 Ewing, C.M., Guillin, C., Dhakal, R.P. and Chase, J.G. (2009), "Spectral analysis of semi-actively controlled structures subjected to blast loading", Struct. Eng. Mech., 33(1), 79-93. https://doi.org/10.12989/sem.2009.33.1.079.   DOI
2 Feldgun, V. R., Kochetkov, A.V., Karinski, Y.S. and Yankelevsky, D.Z. (2008a), "Internal blast loading in a buried lined tunnel", Int. J. Impact Eng., 35(3), 172-183. https://doi.org/10.1016/j.ijimpeng.2007.01.001.   DOI
3 Feldgun, V., Kochetkov, A.V., Karinski, Y.S. and Yankelevsky, D.Z. (2008b), "Blast response of a lined cavity in a porous saturated soil", Int. J. Impact Eng., 35(9), 953-966. https://doi.org/10.1016/j.ijimpeng.2007.06.010.   DOI
4 Wu, C., Lu, Y. and Hao, H. (2004), "Numerical prediction of blastinduced stress wave from large-scale underground explosion", Int. J. Numer. Anal. Meth. Geomech., 28(1), 93-109. https://doi.org/10.1002/nag.328.   DOI
5 Wu, Y.K., Hao. H., Zhou, Y.X. and Chong, K. (1998), "Propagation characteristics of blast-induced shock waves in a jointed rock mass", Soil Dyn. Earthq. Eng., 17(6), 407-412. https://doi.org/10.1016/S0267-7261(98)00030-X.   DOI
6 Xu, L., Schreyer, H. and Sulsky, D. (2015), "Blast-induced rock fracture near a tunnel", Int. J. Numer. Anal. Meth. Geomech., 39(1), 23-50. https://doi.org/10.1002/nag.2294.   DOI
7 Hadianfard, M.A., Farahani, A. and B-Jahromi, A. (2012), "On the effect of steel columns cross sectional properties on the behaviours when subjected to blast loading", Struct. Eng. Mech., 44(4), 449-463. https://doi.org/10.12989/sem.2012.44.4.449.   DOI
8 Gui, M.W. and Chien, M.C. (2006), "Blast-resistant analysis for a tunnel passing beneath Taipei Shongsan airport - A parametric study", Geotech. Geol. Eng., 24(2), 227-248. https://doi.org/10.1007/s10706-004-5723-x.   DOI
9 Gupta, A.S. (1997), Engineering Behavior and Classification of Weathering Rock, Indian Institute of Technology Delhi, Delhi, India.
10 Guzas, E.L. and Earls, C.J. (2010), "Air blast load generation for simulating structural response", Steel Compos. Struct., 10(5), 429-455. https://doi.org/10.12989/scs.2010.10.5.429.   DOI
11 Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M.S.B. and Karimzade, K. (2015), "Simplified damage plasticity model for concrete", Struct. Eng. Int., 27(1), 68-78. https://doi.org/10.2749/101686616X1081.
12 Han, Y. and Liu, H. (2016), "Failure of circular tunnel in saturated soil subjected to internal blast loading", Geomech. Eng., 11(3), 421-438. https://doi.org/10.12989/gae.2016.11.3.421.   DOI
13 Zaid, M. and Sadique, M.R. (2020a), "The response of rock tunnel when subjected to blast loading: Finite element analysis", Eng. Reports, e12293. https://doi.org/10.1002/eng2.12293
14 Han, Y., Zhang, L. and Yang, X. (2016a), "Soil-tunnel interaction under medium internal blast loading", Procedia Eng., 143, 403-410. https://doi.org/10.1016/j.proeng.2016.06.051.   DOI
15 Han, Y., Zhang, L. and Yang, X. (2016b), "Soil-tunnel interaction under medium internal blast loading", Procedia Eng., 143, 403-410. https://doi.org/10.1016/j.proeng.2016.06.051.   DOI
16 Hibbitt, D., Karlsson, B. and Sorensen, P. (2014), ABAQUS User-Manual Release 6.14., Dassault Systemes Simulia Corporation, Providence, Rhode Island, U.S.A.
17 Yadav, H.R. (2005), "Geotechnical evaluation and analysis of Delhi metro tunnels", Ph.D. Thesis, Indian Institute of Technology Delhi, New Delhi, India.
18 Yang, Y., Xie, X. and Wang, R. (2010), "Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion", J. Rock Mech. Geotech. Eng., 2(4), 373-384. https://doi.org/10.3724/SP.J.1235.2010.00373.
19 Zaid, M. and Sadique, M.R. (2020b), "Blast resistant behaviour of tunnels in sedimentary rocks", Int. J. Protect. Struct., 204141962095121. https://doi.org/10.1177/2041419620951211.
20 Zaid, M., Mishra, S. and Rao, K.S. (2020), Finite Element Analysis of Static Loading on Urban Tunnels, in Geotechnical Characterization and Modelling, Springer, Singapore, 807-823.
21 Jain, P. and Chakraborty, T. (2018), "Numerical analysis of tunnel in rock with basalt fiber reinforced concrete lining subjected to internal blast load", Comput. Concrete, 21(4), 399-406. https://doi.org/10.12989/cac.2018.21.4.399.   DOI
22 Higgins, W., Chakraborty, T. and Basu, D. (2012), "A high strainrate constitutive model for sand and its application in finite element analysis of tunnels subjected to blast", Int. J. Numer. Anal. Meth. Geomech., 37(15), 2590-2610. https://doi.org/10.1002/nag.2153.   DOI
23 Hoffman, B. and Reinares, F. (2014), The Evolution of the Global Terrorist Threat: From 9/11 to Osama Bin Laden's Death, Columbia University Press, New York, U.S.A.
24 IS 456 (2000), Plain and Reinforced Concrete - Code of Practice. New Delhi, India.
25 Jeon, S., Kim, T.H. and You, K.H. (2015), "Characteristics of crater formation due to explosives blasting in rock mass", Geomech. Eng., 9(3), 329-344. https://doi.org/10.12989/gae.2015.9.3.329.   DOI
26 Jia, S., Zhao, Z., Wu, G., Wu, B. and Wen, C. (2020), "A coupled elastoplastic damage model for clayey rock and its numerical implementation and validation", Geofluids. https://doi.org/10.1155/2020/9853782.
27 Kim, D. and Park, K. (2019), "Study on the characteristics of grout material using ground granulated blast furnace slag and carbon fiber", Geomech. Eng., 19(4), 361-368. https://doi.org/10.12989/gae.2019.19.4.361.   DOI
28 Zhao, C.F. and Chen, J.Y. (2013), "Damage mechanism and mode of square reinforced concrete slab subjected to blast loading", Theor. Appl. Fract. Mech., 63-64, 54-62. https://doi.org/10.1016/j.tafmec.2013.03.006.   DOI
29 Joachim, C. and Lundermann, C. (1994), "Parameter study of underground ammunition storage magazines", U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, U.S.A.
30 Karinski, Y.S., Feldgun, V.R. and Yankelevsky, D.Z. (2009), "Explosion-induced dynamic soil-structure interaction analysis with the coupled Godunov-variational difference approach", Int. J. Numer. Meth. Eng., 77(6), 824-851. https://doi.org/10.1002/nme.2436.   DOI
31 Larcher, M. and Casadei, F. (2010), "Explosions in complex geometries-A comparison of several approaches", Int. J. Protect. Struct., 1(2), 169-195. https://doi.org/10.1260/2041-4196.1.2.169.   DOI
32 Kim, S. H., Woo, H., Choi, G. and Yoon, K. (2018), "A new concept for blast hardened bulkheads with attached aluminum foam", Struct. Eng. Mech., 65(3), 243-250. https://doi.org/10.12989/sem.2018.65.3.243.   DOI
33 Kumar, R., Choudhury, D. and Bhargava, K. (2014), "Prediction of blast-induced vibration parameters for soil sites", Int. J. Geomech., 14(3), 04014007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000355.   DOI
34 Lane, K.S. (2019), Tunnels and underground excavations History, Methods, Uses, & Facts, Britannica. https://www.britannica.com/technology/tunnel.
35 Lee, J. and Fenves, G. (1998), "Plastic damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).   DOI
36 Lee, J.S., Ahn, S.K. and Sagong, M. (2016), "Attenuation of blast vibration in tunneling using a pre-cut discontinuity", Tunn. Undergr. Sp. Technol., 52, 30-37. https://doi.org/10.1016/j.tust.2015.11.010.   DOI
37 Liu, H. (2011), "Damage of cast-iron subway tunnels under internal explosions", Proceedings of the Geo-Frontiers Congress 2011, Dallas, Texas, U.S.A., March.
38 Li, G.Q., Yang, T.C. and Chen, S.W. (2009), "Behavior and simplified analysis of steel-concrete composite beams subjected to localized blast loading", Struct. Eng. Mech., 32(2), 337-350. https://doi.org/10.12989/sem.2009.32.2.337.   DOI
39 Liao, J.J. and Ma, G. (2018), "Energy absorption of the ring stiffened tubes and the application in blast wall design", Struct. Eng. Mech., 66(6), 713-727. https://doi.org/10.12989/sem.2018.66.6.713.   DOI
40 Liu, H. (2009), "Dynamic analysis of subway structures under blast loading", Geotech. Geol. Eng., 27(6), 699-711. https://doi.org/10.1007/s10706-009-9269-9.   DOI
41 Mazek, S.A. (2014), "Performance of sandwich structure strengthened by pyramid cover under blast effect", Struct. Eng. Mech., 50(4), 471-486. https://doi.org/10.12989/sem.2014.50.4.471.   DOI
42 Lotfi, S. and Zahrai, S.M. (2018), "Blast behavior of steel infill panels with various thickness and stiffener arrangement", Struct. Eng. Mech., 65(5), 587-600. https://doi.org/10.12989/sem.2018.65.5.587.   DOI
43 Lu, Y., Wang, Z. and Chong, K. (2005), "A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations", Soil Dyn. Earthq. Eng., 25(4), 275-288. https://doi.org/10.1016/j.soildyn.2005.02.007.   DOI
44 Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plasticdamage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.   DOI
45 Ma, G., Hao, H. and Zhou, Y.X. (1998), "Modeling of wave propagation induced by underground explosion", Comput. Geotech., 22(3-4), 283-303. https://doi.org/10.1016/S0266-352X(98)00011-1   DOI
46 Ma, G.W., Huang, X. and Li, J.C. (2009), "Damage assessment for buried structures against internal blast load", Struct. Eng. Mech., 32(2), 301-320. https://doi.org/10.12989/sem.2009.32.2.301.   DOI
47 Naqvi, M.W., Akhtar, M.F., Zaid, M. and Sadique, M.R. (2020), "Effect of superstructure on the stability of underground tunnels", Transp. Infrastruct. Geotechnol., 1-20. https://doi.org/10.1007/s40515-020-00119-6.
48 Ozacar, V. (2018), "New methodology to prevent blasting damages for shallow tunnel", Geomech. Eng., 15(6), 1227-1236. https://doi.org/10.12989/gae.2018.15.6.1227.   DOI
49 Park, J.Y. and Krauthammer, T. (2009), "Inelastic two-degree-offreedom model for roof frame under airblast loading", Struct. Eng. Mech., 32(2), 321-335. https://doi.org/10.12989/sem.2009.32.2.321.   DOI
50 Richemond-Barak, D. (2017), Underground Warfare, Oxford University Press.
51 Choi, S., Wang, J., Munfakh, G. and Dwyre, E. (2006), "3D nonlinear blast model analysis for underground structures", Proceedings of the GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, Atlanta, Georgia, U.S.A., February-March.
52 Abaqus Documentation (2014), Dassault Systemes, Providence, Rhode Island, U.S.A.
53 Abdollahzadeh, G. and Faghihmaleki, H. (2017), "A method to evaluate the risk-based robustness index in blast-influenced structures", Earthq. Struct., 12(1), 47-54. https://doi.org/10.12989/eas.2017.12.1.047.   DOI
54 Ambrosini, D. and Luccioni, B.M. (2009), "Reinforced concrete wall as protection against accidental explosions in the petrochemical industry", Struct. Eng. Mech., 32(2), 213-233. https://doi.org/10.12989/sem.2009.32.2.213.   DOI
55 Bangash, M. and Bangash, T. (2005), Explosion-Resistant Buildings: Design, Analysis, and Case Studies, Springer-Verlag Berlin Heidelberg, Heidelberg, Germany.
56 Chaudhary, R.K., Mishra, S., Chakraborty, T. and Matsagar, V. (2019), "Vulnerability analysis of tunnel linings under blast loading", Int. J. Protect. Struct., 10(1), 73-94. https://doi.org/10.1177/2041419618789438.   DOI
57 Chen, L., Zhou, Z., Zang, C., Zeng, L. and Zhao, Y. (2019), "Failure pattern of large-scale goaf collapse and a controlled roof caving method used in gypsum mine", Geomech. Eng., 18(4), 449-457. https://doi.org/10.12989/gae.2019.18.4.449.   DOI
58 Chille, F., Sala, A. and Casadei, F. (1998), "Containment of blast phenomena in underground electrical power plants", Adv. Eng. Softw., 29(1), 7-12. https://doi.org/10.1016/S0965-9978(97)00047-1.   DOI
59 DMRC (2015), Design specifications, DMRC, Barakhamba road, New Delhi, India.
60 Dvorak, G. and Suvorov, A. (2006), "Protection of sandwich plates from low-velocity impact", J. Compos. Mater., 40(15), 1317-1331. https://doi.org/10.1177/0021998305059053.   DOI
61 Song, Z.P., Li, S.H., Wang, J.B., Sun, Z.Y., Liu, J. and Chang, Y.Z. (2018), "Determination of equivalent blasting load considering millisecond delay effect", Geomech. Eng., 15(2), 745-754. https://doi.org/10.12989/gae.2018.15.2.745.   DOI
62 Rizvi, Z.H., Khan, M.A., Sembdner, K. and Husain, S.F. (2018), "Numerical modelling of crack wave interaction with BEM", Materials Today Proceedings, 28253-28261. https://doi.org/10.1016/j.matpr.2018.10.070.
63 Singh, B. and Goel, R.K. (1999), Rock Mass Classification, A Practical Approach in Civil Engineering, 1st Edition, Elsevier.
64 Sohn, J.M., Kim, S.J., Seong, D.J., Kim, B.J., Ha, Y.C., Seo, J.K. and Paik, J.K. (2014), "Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions", Struct. Eng. Mech., 51(5), 755-771. https://doi.org/10.12989/sem.2014.51.5.755.   DOI
65 Uyar, G.H., and Aksoy, C.O. (2019), "Comparative review and interpretation of the conventional and new methods in blast vibration analyses", Geomech. Eng., 18(5), 545-554. https://doi.org/10.12989/gae.2019.18.5.545.   DOI
66 Verma, H. K., Samadhiya, N.K., Singh, M., Goel, R.K. and Singh, P.K. (2018), "Blast induced rock mass damage around tunnels", Tunn. Undergr. Sp. Technol., 71, 149-158. https://doi.org/10.1016/j.tust.2017.08.019.   DOI