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Abstract 
 

This paper studies a single-user Mobile Edge Computing (MEC) system where mobile device 
(MD) includes an application consisting of multiple computation components or tasks with 
dependencies. MD can offload part of each computation-intensive latency-sensitive task to the 
AP integrated with MEC server. In order to accomplish the application faultlessly, we 
calculate out the optimal task offloading strategy in a time-division manner for a 
predetermined execution order under the constraints of limited computation and 
communication resources. The problem is formulated as an optimization problem that can 
minimize the energy consumption of mobile device while satisfying the constraints of 
computation tasks and mobile device resources. The optimization problem is equivalently 
transformed into solving a nonlinear equation with a linear inequality constraint by leveraging 
the Lagrange Multiplier method. And the proposed dual Bi-Section Search algorithm 
Bi-JOTD can efficiently solve the nonlinear equation. In the outer Bi-Section Search, the 
proposed algorithm searches for the optimal Lagrangian multiplier variable between the lower 
and upper boundaries. The inner Bi-Section Search achieves the Lagrangian multiplier vector 
corresponding to a given variable receiving from the outer layer. Numerical results 
demonstrate that the proposed algorithm has significant performance improvement than other 
baselines. The novel scheme not only reduces the difficulty of problem solving, but also 
obtains less energy consumption and better performance. 
 
 
Keywords: Mobile edge computing, computation offloading, task dependency, optimization 
problem, convex optimization 
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1. Introduction 

With generations of mobile devices launched by mobile device providers, users focus on 
implementing more complex application on their MDs. More and more emerging applications 
(i.e. online game, augmented reality, video optimization/acceleration, real-time monitoring, 
face recognition) are being integrated to form more powerful mobile application[1,2]. Those 
powerful mobile applications consist of multiple computation tasks with dependencies. In 
order to accomplish every computation task, the computation and communication resources of 
MD will be heavily occupied. However, MD's finite battery life and limited computation 
capacity pose significant challenges on accommodating the resource demand of those 
applications[3]. Fortunately, offloading computation tasks partly to Mobile Cloud Computing 
(MCC)[4] provides a promising technique to the elastic scaling of the capability of MDs. 
However, driven by the vision of 5G communications, the inherent limitation of MCC, i.e. the 
long transmission distance from MD to MCC, will lead to exceedingly long latency for mobile 
applications[5]. Moreover, there still exists many urgent issues to solve, such as increasing 
demand for high bandwidth, decreasing the energy consumption, and high quality of 
experience. Mobile Edge Computing (MEC)[6] can address those limitation by offloading 
computation tasks to the near-user MEC server instead of the remote cloud center.[7] indicated 
that MEC would play an significant role in 5G, the next generation mobile network. MEC[8,9] 
is regraded as a brilliant solution to overcome these difficulties. 

By combining with partial computation offloading, the computation task can be divided into 
two parts, which are executed locally and on the MEC server. [10] deeply studied the 
computation offloading scheme with the two protocols TDMA and OFDMA in a multiuser 
Mobile Edge Computing Offloading system by joint optimization the offloading ration, 
computation and communication resources, and formulated the two computation offloading 
problem as a convex optimization problem and a mixed-integer problem, respectively. Chen et 
al.[11] studied a multiuser computational offloading problem in a MEC system under the 
constraints of communication and computation resources, and designed a distributed 
computation algorithm which could obtain the Nash equilibrium by using the game theoretic. 
Chen et al.[12] proposed a decentralized computation offloading algorithm which could 
achieve a Nash equilibrium in a multiple mobile devices MCC system. [13] proposed a 
computation offloading framework in a multiple wireless access points MEC system by 
optimizing the chosen edge server, the CPU frequency and computation and communication 
resources to trade off the energy consumption and execution time of mobile device including 
multiple independent tasks. [14,15] all carried out reaserch for the purpose of maximizing the 
computation rate, but the backgrounds of the proposed problem and the strategies and 
measures show were different. [14] jointly optimized the transmission power at the access 
point, the task computation mode(local computing or computation offloading) and time 
allocation to tasks, and derived the optimal solution by using the convex optimization 
techniques. In order to prolong the standy time of MD, wireless powered transfer(WPT) and 
MEC had been integrated together. [15] jointly optimized the computation mode 
selection(local computing or edge computing), the time allocated to wireless power 
transfer(WPT) and task offloading in a WPT-assisted multi-MD MEC system. And a joint 
optimization algorithm based on ADMM decomposition technique was proposed to tackle this 
problem. In [16], the proposed dynamic computation offloading algorithm achieved the 
multi-objective optimization by jointly optimizing the computation offloading ratio, the CPU 
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frequency allocated to local execution, and the transmission power for computation offloading 
under the MEC system with an energy harvesting technique. In the following paper[17], MDs 
not only could offload their jobs to the MEC server, but also could request computation 
resource from others MD in the same MEC system. Meanwhile, all the MDs obtained energy 
from the AP by using WPT technique. [17] aimed at minimizing the whole AP's energy 
transmitted under the constraints of communication and computation resources, the deadline 
and the power transmission. [18,19] also gived a study on computation offloading. Although 
these papers are all about independent task with MD as shown previously, there is no 
dependency relationship among tasks. As the application becomes increasingly complex, 
multiple tasks, functions or applications are incorporated into an integrated application. Thus, 
an in-depth study of offloading computation tasks with dependencies is worthwhile. 

Coarse-granularity based task offloading policy is used to provide a optimal solution for 
tasks with dependencies. [20] proposed a collaborative task computation algorithm to prolong 
the standby time of mobile devices for the application model in the linear topology. [21] 
provided a comprehensive computation offloading algorithm for computationally intense 
applications with multiple subtasks to determine which subtasks should be computed in the 
MD or cloud. [22] aimed to trade-off the energy consumption of MD and latency for 
application by finding the optimal assignments of tasks executed on local or remote devices. 
[23] achieved the trade-offs between the energy cost and latency by optimizing the power 
allocation and the offloading decisions for an application modeled as directed acyclic 
graph(DAG). [24,25] also could obtain an overall solution by designing a joint scheduling 
offloading policy for the application with sequential task dependencies. [26] divided the 
application into a non-offloadable task and multi-offloadable tasks, and a low complexity 
sub-optimal algorithm was proposed to decide which offloadable task should be transmitted to 
MEC server. For an application including multiple subtasks depended on each other, [27] 
proposed a heuristic algorithm based on particle swarm optimizer (PSO) to solve the 0-1 
programming problem, where 0 represented local computing and 1 represented edge 
computing.  

Though these studies improve the performance of mobile device by using computation 
offloading, most of those researches focus on the optimal scheduling order. Meanwhile, the 
transmission power and the CPU frequency allocated to tasks are fixed. Therefore, we make a 
study on the computation offloading in the mobile application which includes multiple 
computational intensive dependent tasks for a single MD MEC system, and propose an 
algorithm that minimizes the energy cost and improves performance by jointly optimizing the 
offloading ratio, CPU frequency, the transmission power and the transmission time. [28] 
compared the performance of offloading the dependent tasks from MD to a remote cloud 
center or an edge server and made the conclusion that offloading to an edge server is a 
promising technique in providing better performance than a remote cloud server. [29] took use 
of offloading strategy which migrated tasks in the task graph to the nearby wearable or mobile 
device through the available wireless communication interface such as Bluetooth or Wi-Fi. 
Experimental conclusions of [29] demonstrated that the scheduling policy could achieve the 
two objectives of extending battery lifetime and enhancing performance. At present, there are 
not many works related to task graph on MEC system, most of them are sub-task granularity 
and these works aim at different objective. As far as we know, there is no related work with the 
goal of minimizing energy consumption of MD by dividing the input data of all the subtasks 
on task graph bit by bit, which is able to guarantee the higher resource utilization and less 
energy consumption. Accordingly, this paper aims to minimize the energy consumption of 
task graph by jointly optimizing the resource allocation strategy. 
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In this paper, we study an single MD MEC system where MD executes a mobile application 
made up of multiple computation tasks. The objective of the paper is to minimize the energy 
consumption of MD with energy-saving resources allocation. In this paper, we model the 
complex mobile application consisting of multiple interdependent tasks as a DAG task-graph, 
and develop an energy-efficient computation offloading algorithm by joint optimization the 
communication and computation resources. Our main contributions are generalized as 
follows. 

Firstly, in term of system model, most the computation offloading algorithms do not take 
into account the computation results feedback, and partial computation offloading for tasks 
with dependencies is task granularity rather than dividing the input data bit by bit. Therefore, 
we propose a system model of partial computation offloading for a application consisting of 
multiple tasks with dependencies, which divides the computation data by bitwise and 
integrates results feedback. 

Secondly, in term of problem formulation, for tasks with dependencies, most studies are 
aimed at achieving the objective of saving energy or reducing latency by optimizing 
scheduling strategy with fixed transmission power and local computation capacity. However, 
this paper uses the DVFS technique optimize the CPU frequency, and achieves the optimal 
transmission power. The corresponding time slots for the local computing, uploading the 
offloading bits and computation results feedback are allocated with a time division mechanism. 
Therefore, the problem is formulated as an optimization problem that minimizes the MD’s 
energy consumption with the constraints of the delay, the computation and communication 
capacity. 

Finally, in term of the optimal solution, convex optimization techniques and the Lagrange 
Multiplier method are used to simplify the problem, and the original non-convex optimization 
problem is transformed into a univariate nonlinear equation, which accelerates the problem 
solving. Simulation results demonstrate that the proposed algorithm not only saves energy 
consumption, but also prolongs the standby time of MD. 

The rest of this paper is organized as follows. In Section II, we expounds the system model. 
The problem is formulated and the algorithm for the problem is proposed in Section III and its 
performance evaluation and simulation results are analysed and shown in Section IV. The 
conclusion is given in Section V. 

2. System Model 
As shown in Fig. 1, we consider a basic two-node MEC system that consists of single MD and 
one AP node integrated with a MEC server. In order to reduce the impact of multiple wireless 
channel creation, frequent requests for the MEC server resources, etc. on task offloading, we 
conduct the study in the single MEC server scenatio. Both of the two nodes are equipped with 
one single antenna. This system provides the simplex mode. That is to say, the two processes, 
offloading input data or receiving computation results, can not be executed through the 
wireless channel at the same time. The MEC server not only provides the same execution 
environment but has more sufficient resources than the MD. Therefore, the MEC server can 
accomplish the computation tasks of application more efficient than the MD. The distance is 
defined as d  between MD and AP, and the bandwidth is denoted as B . 
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Fig. 1. A mobile-edge computing system with a mobile device and an AP 

2.1 Computation Application Model 
We assume that the MD has an application that is composed of N computation-intensive tasks 
(See Fig. 1, with an example where 6N = ). Each task can be offloaded to MEC server by 
using partial computation offloading technique. This application model can be described by 
using Directed Acyclic Graph(DAG) ( , )G =    where the node jv  in the node set   
denotes a task in the application, the edge ( ,i jv v ) represents the dependency from task iv  to 

jv  and the edge set   of the DAG denotes the set of dependencies. iSet  represents the 
in-degree set of task i . Task i can not start executing until tasks belonging to iSet  are 
completed.To describe the parametric context of each task, a two-tuple ( ,i iI η ) is defined, 
where 1,...,i N= . Accordingly, iI  is the size of task i  input data which includes the existing 
data il  and the computation results transmitted from tasks in iSet . According to [10,17,19,20], 
we learn that there is a linear relationship between the computation result and the input data for 
the computation task. iη  is the ratio of the output data to the input data for task i . Task i   may 
need the computation results from related tasks if iSet  is not null.As such, the total input data 
size iI  is 

i

i i i
k Set

l lη
∈

+ ∑  while iSet  is non-null. If iSet  is an empty set, iI  is equal to il . We use 

D , a N*N matrix, represent the task graph. 
In this paper, we focus on the scenarios where the MD has finite computing capability. In 

order to accomplish the application, offloading parts of the input data to the MEC server is 
necessary. We assume that all tasks of the application are executed in a predetermined 
scheduling policy which results from Breadth-First Traversal(BFT). For example, we can get 
the scheduling policy (1,2,3,4,5,6  ) in Fig. 1. And then, we realize our objective which 
minimizes the energy consumption of the MD. Meanwhile, with the given scheduling strategy, 
we assume that both local computing and computation offloading of the current task begin 
simultaneously, which ensures that its dependent tasks have completed correctly. iλ  is the 
ratio of the offloading data to the input data for task i , so we can get the constraint of iλ : 

0 1, {1,.. ,  . }.i i Nλ≤ ≤ ∀ ∈                                                               (C1) 

where 1{ ,..., }Nλ λ=λ  denotes the offloading policy of the tasks graph. 
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2.2 Communication Model 
For each computational intensive task i∈ , its input bits iI  is split into two parts 0i iIλ ≥  
and (1 ) 0i iIλ− ≥  bits, which denote the number of bits offloaded to the MEC server through 
AP and computed locally, respectively. MD receives the offloading computing results from 
the MEC server. We introduce the TDMA protocol into the system to avoid any interference 
among tasks. Because of MD and AP equipped with one antenna, the wireless channel can 
execute only one process during each time slot. As shown in Fig. 2, the protocol divides the 
whole time T  into 2N  time slots, and each task contains two time slots ( ,u d

i it t  ). 

 
Fig. 2. The TDMA protocol for mutli-task computation offloading in an application 

 
1) Computation Offloading from MD to the AP 

In the u
it  time slot, task i  offloads i iIλ  input bits to the AP with the transmission power 

0t
iP ≥ . We define 2h  as the channel power gain between MD and AP. Next, the achievable 

data rate(bits/sec) for uploading offloading input data from the MD to the AP is defined as 
2

2
0

log (1 )
t

u i
i

P hr B
N

= +                                                                (1) 

where 0N  means the additive white Gaussian noise at the receiver of the AP. For simplifying 

the computation, we define a function 0
2( ) (2 1), 0

x
BNg x x

h
= − > . According to (1), we can get 

the expression of t
iP   with the variable u

ir . That is to say, 0
2 (2 1)

u
ir

t B
i

NP
h

= − . After we get the 

offloading bits i iIλ  and the uploading time u
it , u

ir  can be represented as u i i
i u

i

Ir
t
λ

= . So t
iP  

can be re-defined as followed: 

0
2 (2 1) ( )

i i
u
i

I
Btt i i

i u
i

N IP g
h t

λ
λ

= − =                                                      (2) 

Based on the actual observation offered in [30], and the equation recommended by the 
EARTH project[31], we know that the uploading power u

iP  includes the transmission power 
t

iP  and an extra constant circuit power c
tP  caused by converting from digital signal to analog 

signal, packaging, and so on. Moreover, u
iP  is linear with t

iP . Therefore, we give the 
following definition: 
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u c t
i t t iP P Pκ= +                                                                  (3) 

where tκ  denotes the linear growth and is a constant coefficient without unit. According to 
(3),the energy consumption of uploading data at MD in time slot u

it  is expressed as 

( ( ) )u u u t ui i
i i i t i iu

i

IE P t g P t
t
λ

κ= = +                                                       (4) 

2) Downloading the Computation Results from the AP to the MD 
Considering that the MD needs to receive the computation results from AP, so the delay 

cannot be ignored. The computation results of task i  are i iIη . And then, the achievable data 
rate for receiving computation results from the AP to the MD is expressed by 

2

2
0

log (1 )F
d

P hr B
N

= +                                                            (5) 

where FP  denotes the transmission power of the AP, which is a constant. Therefore, dr  is a 
constant. Meanwhile, we have known the amount of the computation results i i iIη λ . 
Ultimately, combining (5), we can get the representation as follows: 

d i i i
i

d

It
r

η λ
=                                                                  (6) 

According to [32,33], the MD power consumption d
iP  increases linearly with the download 

data rate dr . So we give the formula of d
iP  as follows. 

d c
i d d dP P rκ= +                                                                 (7) 

where c
dP  is similar to the previous definition c

tP . However, c
dP   is affected by converting 

from analog signal to digital signal, unpackaging, and so on. dκ  represents the linearly 
increasing coefficient. And then, we get the equation of calculating the energy consumed by 
receiving the computation results from AP in the time slot d

it . By merging (6) and (7), d
iE  is 

expressed as the following equation. 

( ) ( )
c

d d d c i i i d
i i i d d d d i i i

d d

I PE P t P r I
r r

η λ
κ κ η λ= = + = +                                     (8) 

2.3 Computing Model 
1) Local Computing: 

(1 )i iIλ−  input data of task i  is executed on the mobile device(MD) within a duration l
it . 

C  denotes the number of CPU cycles required for computing 1-bit of input data at MD, and 

if  is the CPU frequency allocated to task i , i.e. (1 )i i
i l

i

I Cf
t
λ−

= . In practical application, the 

CPU frequency of MD has a maximum value, denoted by maxf . So if  is capped by maxf , i.e. 

(1 ) ,i i
maxl

i

I C f i
t
λ−

≤ ∀                                                             (C2) 
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Also, the computation latency constraint l
it  for local computing of task i  must be satisfied as 

follows: 
0.l

it ≥                                                                                  (9) 
Then, the whole local computation tasks must be accomplished before the deadline, i.e.  

1

N
l
i

i
t T

=

≤∑                                                                             (C3) 

The energy consumption of task i  for local computing is 
3 3 3

3
2

(1 ) ,
( )

l l i i
i l i i l l

i

I CE f t i
t
λ

κ κ
−

= = ∀                                                      (10) 

where lκ means the effective capacitance coefficient which has relation with the chip structure 
of MD. 

According to Fig. 2, for task i , the time that MD starts to transmit input data through 
wireless channel is simultaneous with starting local execution. Besides, according to (10), the 
bigger l

it  is, the smaller l
iE  is. So we can infer that CPU is not in idle state between the end of 

the previous task and the beginning of the next task, which means that local execution lasts the 
whole time period l

it . Consequently, the wireless channel occupation time and local 
computation time should meet the following time constraint for task i . 

, .u d l
i i it t t i+ ≤ ∀                                                                  (11) 

Replacing d
it   with (6), we can rewrite the former time constraint as below. 

, .u li i i
i i

d

It t i
r

η λ
+ ≤ ∀                                                           (C4) 

2) Edge-Computation: We assume that the network and computational resources of the MEC 
server are infinite. Owing to the sufficient computation capability of the MEC server, the delay 
of receiving offloading data, the time spending on accomplishing the offloaded computation 
task, and the delay of sending computation results are relatively small and negligible at the 
MEC server. Therefore,we assume that MD immediately receives computation result from the 
AP when the offloading data transmission is completed. Since the objective is to minimize the 
energy consumption of mobile device, the energy consumption of MEC server is negligible. 

3. Problem Formulation and Optimal Solution 

In this section, we propose a feasible computation offloading scheme to the application 
modeled as task graph. In order to minimize the energy consumption of MD, the CPU 
frequency and the transmission power are optimized for local computing and computation 
offloading, respectively. The solution process of the optimal computation offloading scheme 
is shown below. 

3.1 Problem Formulation 
Under the system model above mentioned, we give a trade-off model between the energy 
consumption of local computing and the energy cost of communication among the AP and the 
MD to obtain the total minimum energy consumption of the MD. Meanwhile, the trade-off 
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model must satisfy the delay constraint, the limited computation and communication resources. 
From (4), (8) and (10), we can come to the conclusion that all the energy consumption of MD 
is impacted by local computing, computation offloading and receiving computation results. 
Learning from the former section, the local energy consumption is influenced by the locally 
executed bits (1 ) ii Iλ−  and its executed time l

it , and the energy consumed by communication 
between the AP and the MD is impacted by the time spending on uploading the offloading bits 

u
it  and the offloading bits ii Iλ . Then, Let 1{ ,..., }Nλ λ=λ , 1{ ,..., }u u u

Nt t=t , 1{ ,..., }l l l
Nt t=t , and 

these three vectors determine how much energy the application will consume. Mathematically, 
the delay-constrained energy minimization optimization problem is formulated as 

( , , ) 1
: min

. . 1, 2, 3, 4
5 : , 0

u l

N
u d l
i i i

i

u l
i i

E E E

s t C C C C
C t t i

=

+ +

> ∀

∑E
λ t t

 

Now we substitute all related equations into problem E , and E  is represented as follows. 

 

ln 2 3
0

1 2 2( , , ) 1

1

((1 ) ): min ( ( 1))+( )
( )

. . 1: 0 1
(1 )2 :

3:

4 :

5 : , 0

i i
u
i

u l

I cN
B tu c d i i

i t t d i i l l
i d i

i

i i
maxl

i
N

l
i

i

u li i
i i

d
u l
i i

N P I Ct P e I
h r t

s t C i
I CC f i

t

C t T

IC t t i
r

C t t i

λ
λ

κ κ η λ κ

λ
λ

η λ

=

=

−
+ − + +

≤ ≤ ∀
−

≤ ∀

≤

+ ≤ ∀

> ∀

∑

∑

E
λ t t

         (12) 

In Problem 1E , C1 denotes the constraint of the offloading ratio, C2 is the maximum CPU 
frequency constraint for each task of the application, and C3 is the deadline constraint. C4 
guarantees that the time cost by local computing must be greater than or equal to the time taken 
by the data transmission and receiving computation results for task i . Note that 1E  is 
non-convex in general because of the coupling of iλ  and l

it  in C2. Therefore, we need convert 

1E  into a convex problem[34] with some measures, and then give the optimal solution. 

3.2 Optimal Solution To 1E  

This subsection gives the optimal solution of 1E . To achieve this goal, firstly, we transform 
C2 into a convex constraint by multiplying both sides of inequality C2 with l

it . The constraint 
C2 is converted to 2C ′ . 

(1 ) 0 . ,l
i i max iI C f t iλ− − ≤ ∀                                                         ( 2C ′ ) 

Then, 1E  is reformulated as follows. 
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ln 2 3
0

2 2 2( , , ) 1

((1 ) ): min ( ( 1))+( )
( )

. . 1, 3, 4, 5
2 : (1 ) 0

i i
u
i

u l

I cN
B tu c d i i

i t t d i i l l
i d i

l
i i max i

N P I Ct P e I
h r t

s t C C C C
C I C f t i

λ
λ

κ κ η λ κ

λ

=

−
+ − + +

′ − − ≤ ∀

∑E
λ t t

          (13) 

Meanwhile, the function 
3

2

(1 )
( )

i
l
it
λ−  is convex with respect to 0 1iλ< <  and 0l

it > [35], and 

hence the equation 
3

2

((1 ) )
( )

l i i
l
i

I C
t

κ λ−  in the objective function is jointly convex with respect to 

0 1iλ< <  and 0 l
it T< < . Moreover, the following lemma demonstrates the evidence that 

Problem 2E  is a convex problem. 
Lemma 1 Problem 2E  is a convex optimization problem. 
Proof: Because ( )g x  is an exponential function and a convex function, its perspective 

function[13], ( )u i i
i u

i

It g
t
λ  is still convex. Also, 

3

2

((1 ) )
( )

l i i
l
i

I C
t

κ λ−  is jointly convex function[35]. 

Thus, the objective function which is the summation of a set of convex functions, holds the 
convexity. All constraints are the linear convex function. Consequently, we get the result of 
Lemma 1. 

Assume that Problem 2E  is feasible, we use the Lagrange Multiplier method to simply the 
problem solving. We define 0, 0, 0i i iα β γ≥ ≥ ≥  as the Lagrangian multipliers for C1, 

2C ′ ,C4, respectively. µ  is the Lagrange multiplier for C3. Therefore, the partial Lagrangian 
function of 2E  is given by 

ln 2 3
0

2 2
1

1 1 1

1

((1 ) )( , , , , , , ) ( ( 1)) ( )
( )

( 1) ((1 ) ) ( )

( )

i i
u
i

I cN
B tu l u c t d i i

i t d i i l l
i d i
N N N

l u li i i
i i i i i max i i i i

i i i d
N

l
i

i

N P I Ct P e I
h r t

II C f t t t
r

t T

λ
κ λ

µ κ η λ κ

η λ
α λ β λ γ

µ

=

= = =

=

−
= + − + + +

+ − + − − + + −

+ −

∑

∑ ∑ ∑

∑

 λ α β γt t

   (14) 

Let { }* * *, ,u l
i i it tλ  denote the optimal solution of 2E . The optimal solution always satisfies all 

constraints and has the minimum energy consumption of MD. By applying KKT conditions, 
the following necessary and sufficient conditions must be true. 

*

*
ln 2 * 2 3 3

* * *0
* 2 * 2

ln 2 ( ) 3 (1 ) 0
( )

i i
u
i

I c
Btt i d d d i i l i i i i

i i i il
i d i d

N I P r I I C Ie I C
Bh r t r

λ
κ κ η κ λ η

α β γ
λ

+ −∂
= + − + − + =

∂
    (a) 

* *

* *
ln 2 ln 2*

*0 0
* 2 2 *

ln 2( 1) 0
i i i i

u u
i i

I I
B t B tc i i

t t t iu u
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* 3 3 3
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l i i
i max il l

i i

I C f
t t

κ λ
β γ µ

−∂
= − − − + =

∂
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* * *((1 ) ) 0,l
i i i max iI C f t iβ λ− − = ∀                                           (e) 

*
* * *( ) 0,u li i i
i i i

d

It t i
r

η λ
γ + − = ∀                                             (f) 

* *

1
( ) 0

N
l
i

i
t Tµ

=

− =∑                                                   (g) 

According to (b), we can get Lemma 2 which describes the relations among { }* * *, ,u
i i itλ γ . 

Lemma 2 The optimal { }* * *, ,u
i i itλ γ  satisfies  

* 2

*
0

( )1(1 ( )) ,
ln 2

c
i t i

u
i i t

P hB W i
t I e eN
λ γ

κ
+−

= + + ∀                                           (15) 

where ( )W x  defines the Lambert-W function, i.e. ( )( ) .W xx W x e=   

Proof: With the help of (b), we have 
*

*
ln 2* * 2( 1)

*
0

ln 2 ( )1( 1) .
i i

u
i

I c
B ti i t i

u
i t

I P he
B t e eN

λ
λ γ

κ

⋅
−

⋅⋅ +−
− = +

⋅
 

According to the Lambert-W function, i.e. ( )( ) W xx W x e= , which is the inverse function of 

( ) xf x xe= .We can straightforwardly infer that 
* * 2

*
0

ln 2 ( )1( 1) ( ),
c

i i t i
u
i t

I P hW
B t e eN

λ γ
κ

⋅ +−
− = +

⋅
 

which leads to the result in Lemma 2 with some simple operations. 
With some operations on (c), we can get the following expression. 

* 3 3 3
* * *

* 3

2 (1 ) ,
( )

l i i
i max il

i

I C f i
t

κ λ
µ β γ

−
= + + ∀ . Therefore, we can get the result * 0µ > . Combining 

with (g), the summation of *l
it  is identically equal to T , i.e. 

*

1

N
l
i

i
t T

=

=∑                                                                 (16) 

which conforms to the monotonically decreasing property of the objective function respect to 
l
it . According to (a), (c), (d), we can get the following Lemma 3. In order to reduce the 

complexity of interpretation, we firstly define 
2

0

( )1( ) 1 ( ).
c

t i
i i

t

P hW
e eN

γ
ϕ γ

κ
+−

= + +                                                   (17) 

Lemma 3 The optimal { }* * *, ,l
i i itλ γ  satisfies 

*
*

( )0
1* 2
2

* 2 3

ln 2 ( )
1 ( )

3

i i ct i i i
d d d

i d d
l
i l i

N e P r
Bh r r

t I C

ϕ γκ η γ ηκ
λ

κ

+ + +
−

=                                                    (18) 

The ratio is influenced by the i-th task parameters of { },i iIη  and the lagrangian multiplier iγ . 
Proof: At first, according to (d), because not all the input data is transmitted to the MEC 

server, we obtain * 0iα = . The result makes sure that the local energy cost is not the maximum. 
And then, to ensure (e) true, since the CPU frequency if  allocated to task i  always less than 

maxf , we obtain * 0iβ = . Plugging * 0iβ =  into (c), and making some simple manipulations, 
we obtain the following result. 
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* 3 3 3
* *

* 3

2 (1 ) , .
( )

l i i
il

i

I C i
t

κ λ
µ γ

−
= + ∀                                                    (19) 

At last, we substitute (17), * *0, 0i iα β= =  into (a). The Lemma 3 is inferred. 

We know (1 )i i
i maxl

i

I Cf f
t
λ−

= ≤ . Meanwhile, plugging (18) into if , we obtain an 

inequality about *
iγ . We introduce the function *( )i iF γ  for replacing the ratio 

*

*

1 i
l
it
λ− , i.e. 

*
*

*

1( ) i
i i l

i

F
t
λ

γ
−

= . Correspondingly, the range of *
iγ  can be described as Proposition 1. 

Proposition 1 *( )i iF γ  is a monotonically increasing function when * 0iγ > . The one and only 
0iγ >  satisfies *( )i i maxF fγ =  existed. The value is defined as (0)

iγ , and * (0)
i iγ γ≤  . 

Proof: ( )i ieϕ γ  is an increasing function with 0iγ ≥  because ( )i iϕ γ  is an increasing 

function with 0iγ ≥ . Meanwhile, i
i

dr
η
γ  is a linear function. Because ( )i iF γ   is the square root 

of the sum of an increasing function, we infer that ( )i iF γ  is an increasing function with 0iγ ≥ . 

iγ → +∞  and ( )i iF γ → +∞ . So we can get the unique (0)
iγ  by using the Bi-Section Search 

method. The Proposition 1 is proved. 
* * * 32 ( ( )) .i l i iFµ γ κ γ= +                                                          (20) 

Now, substituting (18) into (19), we get (20). Learning from (18), we acknowledge that µ  
is associated with *

iγ , iη , and the performance parameters of SD. Although the ratio of (18) 
changes over *, ,i i iIη γ , the lagrangian multiplier µ  is fixed. Meanwhile, µ  is a scalar rather 
than a vector. Therefore, the lagrangian multiplier *

iγ  should satisfy * 0iγ > . In order to meet 

the condition (f), we get the result 
*

* *u li i i
i i

d

It t
r

η λ
+ =  because of * 0iγ > . Accordingly, we obtain 

Lemma 4 by using the above derivation results, which denotes that the local execution time *l
it  

can be expressed as a function with a single variable lagrangian multiplier *µ . 
Lemma 4 The optimal *l

it  can be expressed as 
* *

1
2 * 1 * 3

11 *
3

1( ) ,
ln 2 ( ( ))

( ln 2 ( ( )))
)

=

(2

l
i i

d d i

i i i i d i i i i
i l

t Q
r r

I I r BI
I C

µ
µ ψ µ

η η ηϕ ψ µ
κ

−

−

=
−

− +
+

                          (21) 

( )iQ µ  is monotonically decreasing with *l rµ µ µ≤ ≤ . If ( )r
iQ Tµ >∑  or ( )l

iQ Tµ <∑ , λ , 
lt , and ut  do not exist. If ( )l

iT Q µ<∑  and ( )r
iQ Tµ <∑ , λ , lt , and ut  are unique. 

Proof: Firstly, ( )i iµ ψ γ=  is introduced to simplify the derivation and computation, i.e. 
3( ) 2 ( )i i i l i iFψ γ γ κ γ= + . 2( ) 1 6 ( ) ( )i i l i i i iF Fψ γ κ γ γ′′ = +  denotes its derivation. Learning from 

Proposition 1, we can get ( ) 1i iψ γ′ >  because ( )i iF γ  is a monotonically increasing function 

( ) 0i iF γ >′ . Consequently, ( )i iψ γ  is a monotonically increasing function with 0iγ > . Given 
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the value of µ , we can get a unique iγ , and vice versa. The inverse function of ( )i iψ γ  is 

denoted as 1( )i iγ ψ µ−= , and ( )i iF γ  can be rewritten as 
1
3( )( ) ( )

2
i i i

i i
l

F ψ γ γ
γ

κ
−

= . As we all 

know, the derivative of the original function is equal to the inverse of the derivative of its 

inverse function in calculus. Hence, 1 10 ( ) ( ) 1
)(i

i i

ψ µ
ψ γ

− ′< = <
′

, where ( )i iµ ψ γ= . Learning 

from Lemma 2 and Lemma 3, we can get the expression of *l
it  by solving the simultaneous 

equation (22). We use 1( )iψ µ−  replace the Lagrangian multiplier iγ  in (23), and we can use a 
function *( )iQ µ  only associated with *µ  represent *l

it , which is (21). 
*

* *

(15),(18)

u li i i
i i

d

It t
r

η λ
+ =





                                                 (22) 
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d d i i

i i i i d i i i i

t
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I I r B I C
γ

η η ηϕ γ

=
− +

+

                            (23) 

Secondly, based on the property of Lambert-W function 0iϕ ′ > , and 10 ( ) 1iψ − ′< < , the 

derived function ( ) 0iQ µ′ < , and ( )iQ µ  is µ 's rigid monotony decrease by degrees function. 
2 1 1 1

1 21 2
13 3

1
2 1 3

2
11
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+

                    (24) 

Thirdly, we get the interval range of *
iγ  as * (0)0 i iγ γ≤ ≤  according to Proposition 1. And, (20) 

indicates that µ  is a monotonically increasing function with iγ . We define 

{ }(0) max (0)l iµ ψ=  and { }(0) (0)min ( )r i iµ ψ γ= , and the numeric zone of *µ  is displayed as 
follows. 

(0) * (0) .l rµ µ µ≤ ≤                                                                 (25) 
Meanwhile, according to (21), *l

it  is monotonically decreasing with * 0µ ≥ . What’s more, 
*0 l

i Tt≤ ≤ . By solving *l
it T= , we can get a unique value of µ , defined as (1)

lµ . Let 

( )(0) (1),l
l lmaxµ µ µ=  and (0)r

rµ µ= . The restriction of *µ   is rewritten as 
*l rµ µ µ≤ ≤ .                                                                (26) 

By using the well studied methods, i.e. Bi-Section Search, Newton Method, solve 
( ),i i iµ ψ γ= ∀ , the numeric zone of ,i iγ ∀  can be achieved with the given lower and upper 

limits of µ . 
Ultimately, by judging the value of ( )iQ µ∑ , i.e. l

it∑ , we can determine whether problem 

2E  exists the optimal solution *λ , *lt , and *ut  or not. If ( )r
iQ Tµ >∑  or ( )l

iQ Tµ <∑ , it 
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does not exist the optimal solution. If ( )l
iT Q µ<∑  and ( )r

iQ Tµ <∑ , the unique optimal 
solution can be achieved by solving (16). Lemma 4 is proved now. 

Accordingly, problem 2E , a multiple variables non-linear optimization problem with 
multi-constraint, is equivalently transferred to a non-linear equation with a linear inequality 
constraint. The nonlinear equation is expressed as follows: 

 3
1

: ( )

. .

N

i
i

l r

Q T

s t

µ

µ µ µ
=

=

≤ ≤

∑E
                                                             (27) 

Since l
it  is a monotonic decreasing function respect to µ , l

it∑  inherits the descending 
characteristic. Therefore, there exists a unique µ  to 3E . Then, we propose our algorithm 
Bi-JOTD to calculate the optimal solution to 3E . The solution is the optimal offloading 
strategy for 1E , too. The proposed optimization method not only successfully avoids solving a 
nonlinear convex optimization problem with high dimensions and high orders, but also 
overwhelmingly decreases on the computational complexity and the computation time to 
acquire the optimal strategy. The following pseudo-code gives the accurate processes to solve 
the non-linear equation with a linear inequality constraint. 

 
Algorithm 1 calculates the approximate multiplier iγ  which satisfies (19) with given µ . 

Bi-JOTD computes the multiplier µ  among the linear constraint. After Lagrangian 
multipliers *

iγ  and *µ  are achieved, we can use (15), (18), (21) obtain the final optimal 
resource allocation strategy *λ , *lt , and *ut . 
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Through analyzing the proposed algorithm Bi-JOTD, the complexity of Bi-JOTD is 
associated with the iteration number of inner and outer Bi-Section Search algorithms. We 
define inner  and outer  as the complexity of inner and outer algorithms, respectively. 
Therefore, the complexity of Bi-JOTD algorithm is ( )inner outerN   . Compared with the 
original Problem E , our proposed algorithm can greatly reduce the complexity. 

4. Simulation Results 
In this section, the simulation results of the proposed computation offloading scheme through 
joint optimization time allocation and dependency tasks is presented. The scheme is named as 
Bi-JOTD in the simulation results. Based on [16,23,24], the simulation parameters are set as 
follows. We assume that the channel reciprocity holds for the downlink and uplink, and thus 

2 2 2.u dh h h= =  The channel power gain is modeled as 2 310h d ζ− −= Φ [24], where Φ  stands for 
the short-term fading which obeys the Rayleigh fading. For distance d  in meters with the 
same path-loss exponentζ , a 30dB average signal power attenuation is assumed for all the 
channels at reference of 1m. Moreover, the input data size and the ratio of the computation 
results follow the uniform distribution with [10,100]iI KB∈  and [0.01,0.1]iη ∈ , separately. 
The other detailed parameters are listed in Table 1. 

 
Table 1. Simulation Parameters 

Parameter Value 

Bandwidth B  5 Mbps  
Deadline T  1s  

Circuit powers c
tP  and c

dP  45.0*10 W−
 

Distance between the MD and the MEC server d  100m 
Path-loss exponent ζ  1.7 

White Gaussian channel noise 0N  910 W−
 

MD’s maximum CPU frequency maxf  1.0GHz  
The linear growth coefficient tκ  1.0 

The effective capacitance coefficient lκ  2710−
 

The power consumption of receiving per bit dκ  72.86*10 W bit−  
The required number of CPU cycles per bit C  800 cycles bit  

 
Meanwhile, in order to comparison, the following five baselines[5,16,17,23,24,25,26], are 

displayed. 
1) 0.4λ = : The computation input data are divided into two parts for each task. The ratio 

0.4iλ =  of input data is accomplished in the MEC server, and the rest of input data is 
completed in MD.  

2) Task: In the task-graph representing the mobile application, some tasks are offloaded to 
MEC server, and the rest of tasks execute on the mobile device. 

3) 0.8λ = : The offloading ratio of computation data transmitted to MEC server is set as 
0.8iλ = . 
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4) Ave-JOTD: The offloading ratio iλ  is set as the average of suboptimal solution *
iλ , i.e. 

*
i iλ λ=∑ . 
5) PSO-JOTD: The suboptimal task offloading scheme is achieved by using particle swarm 

optimizer (PSO). 

4.1 The Validation of the Optimal Solution 
In this subsection, we verify the correctness and superiority of the proposed algorithm. The 
energy consumption of the approximate solution is close to the cost of the exact solution in a 
tolerable accuracy range, which compares the simulation results of different block input data 

( )I KB  and the ratio η  at the same deadline 1.0T s=  in Fig. 3 and Fig. 4, respectively. 

 
Fig. 3. The energy consumption with different I  versus T  

 
Fig. 4. The energy consumption with different η  versus T  
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By comparing with the energy consumption between the global search with the default step 
size of 0.001 among the fixed range of offloading ratio λ  and the proposed optimization 
algorithm, the energy consumption of the proposed approximate solution is minimum. The 
simulation results of Fig. 3 and Fig. 4 provide the evidence that problem 2E  is a convex 
optimization problem. Meanwhile, the process of solving 2E  is correct. 

4.2 The Simulation Results for Task Graph 

 
Fig. 5. The energy consumption with fixed I  and random η  versus T  

 
Fig. 6. The energy consumption with fixed η  and random I  versus T  

 

This subsection evaluates the energy consumption of the proposed Bi-JOTD algorithm and 
other five baselines, which spends on computing and communicating versus the deadline T . 
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Fig. 5 makes the comparison simulation of energy consumption with a vector ( , )i iI η , where 

iI  is fixed and iη  is random, and Fig. 6 gives a simulation with random iI  and fixed iη . The 
proposed Bi-JOTD algorithm is obviously superior to the other baselines. Specifically, the 
energy consumption of the proposed algorithm is always less than other baselines, which 
further displays the advantages of offloading the computation tasks to the MEC server. The 
minimum energy cost has decreased trend with the increase of T . Therefore, Bi-JOTD 
algorithm has some advantages in solving multi-task application. Then, making a comparison 
test between Bi-JOTD and Ave-JOTD, we can see that the energy cost of Bi-JOTD is less than 
Ave-JOTD with the increase of T . It can be concluded that task's result feedback has a great 
influence on the ratio of offloading input data. Hence, we should comprehensively take task's 
feedback into account in the task graph to solve the objective of the formulated problem. 

 
Fig. 7. The succeeding assignment ratios with random η  and I  versus T  

 
Fig. 8. shows the relationship of the minimum energy consumption of MD, the input data I  and the 

ratio of the computation results η  
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The figure simulated in Fig. 7 is based on 300 times simulated testing, in which iI , iη  are 
randomly selected on the basis of the above assumptions in every implementation, modeling 
the actual computation offloading scenario. We simulate the resource allocation, and the 
statistics of success ratios are brought in Fig. 7. The success ratios of all the schemes increase 
with T , as we excepted. Besides, the success ratio of Bi-JOTD grows faster than others. 
Bi-JOTD can achieve a high success ratio even with low latency T . Meanwhile, as time goes 
by, the success ratio of Bi-JOTD reaches 100%  and remains stable. Compared with other 
baselines, our proposed algorithm has more advantages in a high success ratio. Fig. 8 shows 
the relationship of the minimum energy consumption of MD, the input data and the ratio of 
computation results. The energy consumption is achieved by using our proposed algorithm, 
and 1.5T s= . According to Fig. 8, while setting the value of η , the energy consumption 
increases significantly as the input data increases. When setting the value of the input data I , 
the energy consumption also shows an increasing trend with the increase of η , but the growth 
is not very obvious. In particular, the application cannot be accomplished while 100I KB=  
and =0.1η . Integrated with the previous simulation results and the optimization processes, the 
proposed algorithm not only has a great advantage in energy consumption, but also has a good 
performance on the executability of the computation offloading strategy. Ultimately, 
combining all figures and the equivalence of problem 1E , 2E , and 3E , we can get the 
conclusion that our proposed algorithm not only can obtain higher efficiency, less energy 
consumption and better performance, but also can be calculated more easily than others. 

5. Conclusion 
This work studies a computation offloading scheme for an application including multiple 
computation components with dependencies under a single-user MEC system. MEC server 
assists MD in completing its computation-intensive latency-critical application. The 
application is modeled as a DAG task-graph. By jointly optimizing the offloading ratio, CPU 
frequency, transmission power and transmission time, the objective that minimizes the energy 
consumption of MD is achieved. The problem is formulated as a optimization problem. The 
nonlinear equation with a linear inequality is obtained by using the Lagrange Multiplier 
method and convex optimization techniques. A double Bi-Section Search algorithm is 
proposed to solve the transformed nonlinear equation. Simulation results reveal that the 
proposed strategy greatly reduces the energy consumption while compared with the used 
baselines. The proposed computation offloading scheme not only reduces the difficulty of 
problem solving, but also prolongs the MD’s standy time and achieves better performance. 
Meanwhile, we will extend our study of using partial computation offloading strategy to deal 
with the application including dependent tasks to the multiple mobile devices multiple MEC 
servers scenario. 
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