Browse > Article
http://dx.doi.org/10.12989/was.2015.20.3.423

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes  

He, Tao (Department of Civil Engineering, Shanghai Normal University)
Publication Information
Wind and Structures / v.20, no.3, 2015 , pp. 423-448 More about this Journal
Abstract
In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.
Keywords
fluid-structure interaction; arbitrary Lagrangian-Eulerian; finite element method; coupling scheme; vortex-induced vibrations; large displacement;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Astorino, M., Chouly, F. and Fernandez, M. (2009a), "Robin based semi-implicit coupling in fluid-structure interaction: Stability analysis and numerics", SIAM J. Sci. Comput., 31(6), 4041-4065.   DOI
2 Astorino, M., Chouly, F. and Fernandez, M.A. (2009b), "An added-mass free semi-implicit coupling scheme for fluid-structure interaction", C. R. Acad. Sci. Paris, Ser. I., 347(1-2), 99-104.   DOI
3 Astorino, M. and Grandmont, C. (2010), "Convergence analysis of a projection semi-implicit coupling scheme for fluid-structure interaction problems", Numer. Math., 116(4), 721-767.   DOI
4 Badia, S., Quaini, A. and Quarteroni, A. (2008), "Splitting methods based on algebraic factorization for fluid-structure interaction", SIAM J. Sci. Comput., 30(4), 1778-1805.   DOI
5 Bathe, K.J., Ramm, E. and Wilson, E.L. (1975), "Finite element formulations for large deformation dynamic analysis", Int. J. Numer. Meth. Eng, 9(2), 353-386.   DOI
6 Dettmer, W. and Peric, D. (2006a), "A computational framework for fluid-rigid body interaction: Finite element formulation and applications", Comput. Method. Appl. M., 195(13-16), 1633-1666.   DOI
7 Dettmer, W. and Peric, D. (2006b), "A computational framework for fluid-structure interaction: Finite element formulation and applications", Comput. Method. Appl. M., 195(41-43), 5754-5779.   DOI
8 Dettmer, W.G. and Peric, D. (2013), "A new staggered scheme for fluid-structure interaction", Int. J. Numer. Meth. Eng., 93(1), 1-22.   DOI
9 Eswaran, M., Goyal, P. and Reddy, G.R. (2013), "Fluid-structure interaction analysis of sloshing in an annular-sectored water pool subject to surge motion", Ocean Syst. Eng., 3(3), 181-201.   DOI
10 Farhat, C. and Lesoinne, M. (2000), "Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems", Comput. Method. Appl. M., 182(3-4), 499-515.   DOI
11 Fernandez, M.A. (2011), "Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit", SeMA J., 55, 59-108.   DOI
12 Fernandez, M.A., Gerbeau, J.F. and Grandmont, C. (2007), "A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid", Int. J. Numer. Meth. Eng., 69(4), 794-821.   DOI
13 Forster, C., Wall, W.A. and Ramm, E. (2007), "Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows", Comput. Method. Appl. M., 196(7), 1278-1293.   DOI
14 Habchi, C., Russeil, S. and Bougeard, D. (2013), "Partitioned solver for strongly coupled fluid-structure interaction", Comput. Fluids, 71, 306-319.   DOI   ScienceOn
15 Markou, G.A., Mouroutis, Z.S. and Charmpis, D.C. (2007), "The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems", Comput. Method. Appl. M., 196(4-6), 747-765.   DOI
16 Lesoinne, M. and Farhat, C. (1996), "Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations", Comput. Method. Appl. M., 134(1-2), 71-90.   DOI
17 Liew, K.M., Wang, W.Q. and Zhang, L.X. (2007), "A computational approach for predicting the hydroelasticity of flexible structures based on the pressure Poisson equation", Int. J. Numer. Meth. Eng., 72(13), 1560-1583.   DOI
18 Liu, X.Q., Qin, N. and Xia, H. (2006), "Fast dynamic grid deformation based on Delaunay graph mapping", J. Comput. Phys., 211(2), 405-423.   DOI
19 Matthies, H.G. and Steindorf, J. (2003), "Partitioned strong coupling algorithms for fluid-structure interaction", Comput. Struct., 81(8-11), 805-812.   DOI
20 Morgenthal, G. and McRobie, A. (2002), "A comparative study of numerical methods for fluid structure interaction analysis in long-span bridge design", Wind Struct., 5(2), 101-114.   DOI
21 Murea, C.M. (2007), "A semi-implicit algorithm based on the augmented Lagrangian method for fluid-structure interaction", Proceedings of the ENUMATH 2007, the 7th European Conference on Numerical Mathematics and Advanced Applications, Graz, Austria, September 10-14, 2007.
22 Murea, C.M. and Sy, S. (2009), "A fast method for solving fluid-structure interaction problems numerically", Int. J. Numer. Meth. Fl., 60(10), 1149-1172.   DOI
23 Nagashima, T. and Tsukuda, T. (2013), "Seismic response analysis of an oil storage tank using Lagrangian fluid elements", Coupled Syst. Mech., 2(4), 389-410.   DOI
24 Breuer, M. and Munsch, M. (2008a), "Fluid-structure interaction using LES: A partitioned coupled predictor-corrector scheme", Proc. Appl. Math. Mech., 8(1), 10515-10516.   DOI
25 Bazilevs, Y., Calo, V.M. and Hughes, T.J.R. (2008), "Isogeometric fluid-structure interaction: theory, algorithms, and computations", Comput. Mech., 43(1), 3-37.   DOI
26 Braun, A.L. and Awruch, A.M. (2009), "A partitioned model for fluid-structure interaction problems using hexahedral finite elements with one-point quadrature", Int. J. Numer. Meth. Eng., 79(5), 505-549.   DOI
27 Breuer, M., De Nayer, G. and Münsch, M. (2012), "Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation", J. Fluid. Struct., 29, 107-130.   DOI
28 Breuer, M. and Münsch, M. (2008b), "LES meets FSI: Important numerical and modeling aspects", Proceedings of the 7th International ERCOFTAC Workshop on Direct and Large-Eddy Simulation, Trieste, Italy, September 8-10, 2008.
29 Causin, P., Gerbeau, J.F. and Nobile, F. (2005), "Added-mass effect in the design of partitioned algorithms for fluid-structure problems", Comput. Method. Appl. M., 194(42-44), 4506-4527.   DOI
30 Choi, C.K. and Yu, W.J. (2000), "A new ALE finite element techniques for wind-structure interactions", Wind Struct., 3(4), 291-302.   DOI
31 Chorin, A.J. (1968), "Numerical solution of the Navier-Stokes equations", Math. Comput., 22(104), 745-762.   DOI
32 Codina, R., Vazquez, M. and Zienkiewicz, O.C. (1998), "A general algorithm for compressible and incompressible flows. Part III: The semi-implicit form", Int. J. Numer. Meth. Fl., 27(1-4), 13-32.   DOI
33 He, T., Zhou, D. and Han, Z. (2014), "Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method", Int. J. Comput. Fluid D., 28(6-10), 272-300.   DOI
34 He, T. (2015a), "On a partitioned strong coupling algorithm for modeling fluid-structure interaction", Int. J. Appl. Mech., Accepted.
35 He, T. (2015b), "A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder", Int. J. Comput. Methods., 12(3), 1550012.   DOI
36 He, T., Zhou, D. and Bao, Y. (2012), "Combined interface boundary condition method for fluid-rigid body interaction", Comput. Method. Appl. M., 223-224, 81-102.   DOI
37 Hubner, B., Walhorn, E. and Dinkler, D. (2001), Strongly coupled analysis of fluid-structure interaction using space-time finite elements, Cracow, Poland.
38 Jan, Y.J. and Sheu, T.W.H. (2004), "Finite element analysis of vortex shedding oscillations from cylinders in the straight channel", Comput. Mech., 3 (2), 81-94.
39 Keivani, A. and Shooshtari, A. (2013), "A closed-form solution for a fluid-structure system: shear beam-compressible fluid", Coupled Syst. Mech., 2(2), 127-146.   DOI
40 Keivani, A., Shooshtari, A. and Sani, A.A. (2014), "Forced vibration analysis of a dam-reservoir interaction problem in frequency domain", Coupled Syst. Mech., 3(4), 385-403.   DOI
41 Kuttler, U. and Wall, W. (2008), "Fixed-point fluid-structure interaction solvers with dynamic relaxation", Comput. Mech., 43 (1), 61-72.   DOI
42 Lefrancois, E. (2008), "A simple mesh deformation technique for fluid-structure interaction based on a submesh approach", Int. J. Numer. Meth. Eng., 75(9), 1085-1101.   DOI
43 Piperno, S. (1997), "Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations", Int. J. Numer. Meth. Fl., 25(10), 1207-1226.   DOI
44 Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. - ASCE., 85(3), 67-94.
45 Nomura, T. and Hughes, T.J.R. (1992), "An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body", Comput. Method. Appl. M., 95(1), 115-138.   DOI
46 Olivier, M., Dumas, G. and Morissette, J.F. (2009), "A fluid-structure interaction solver for nano-air-vehicle flapping wings", Proceedings of the 19th AIAA Computational Fluid Dynamics, San Antonio, USA, June 22-25, 2009.
47 Quaini, A. and Quarteroni, A. (2007), "A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method", Math. Models Methods Appl. Sci., 17(6), 957-983.   DOI
48 Sy, S. and Murea, C.M. (2008), "A stable time advancing scheme for solving fluid-structure interaction problem at small structural displacements", Comput. Method. Appl. M., 198(2), 210-222.   DOI
49 Teixeira, P.R.F. and Awruch, A.M. (2005), "Numerical simulation of fluid-structure interaction using the finite element method", Comput. Fluids., 34(2), 249-273.   DOI   ScienceOn
50 Temam, R. (1968), "Une méthode d'approximation des solutions des équations Navier-Stokes", Bull. Soc. Math. France, 96, 115-152.
51 Wall, W.A. and Ramm, E. (1998). "Fluid-structure interaction based upon a stabilized (ALE) finite element method", Proceedings of the 4th World Congress on Computational Mechanics: New Trends and Applications, CIMNE, Barcelona, Spain.
52 Zienkiewicz, O.C. and Codina, R. (1995), "A general algorithm for compressible and incompressible flow. Part I: The split, characteristic-based scheme", Int. J. Numer. Meth. Fl., 20(8-9), 869-885.   DOI
53 Wood, C., Gil, A.J. and Hassan, O. (2008), "A partitioned coupling approach for dynamic fluid-structure interaction with applications to biological membranes", Int. J. Numer. Meth. Fl., 57(5), 555-581.   DOI
54 Yamada, T. and Yoshimura, S. (2008), "Line search partitioned approach for fluid-structure interaction analysis of flapping wing", Comput. Model. Eng. Sci., 24(1), 51-60.
55 Zeng, D.H. and Ethier, C.R. (2005), "A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains", Finite Elem. Anal. Des., 41(11-12), 1118-1139.   DOI
56 Zienkiewicz, O.C., Morgan, K. and Sai, B.V.K.S. (1995), "A general algorithm for compressible and incompressible flow. Part II: Tests on the explicit form", Int. J. Numer. Meth. Fl., 20(8-9), 887-913.   DOI
57 Zienkiewicz, O.C., Nithiarasu, P. and Codina, R. (1999), "The characteristic-based-split procedure: An efficient and accurate algorithm for fluid problems", Int. J. Numer. Meth. Fl., 31 (1), 359-392.   DOI