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Study on swimming of microorganisms like, sperm motility, cilia beating, bacterial flagellar propulsion 
has found immense significance in the field of biological fluiddynamics. Because of the complexity involved, it 
is challenging for the researchers to model such problems. Immersed boundary method has proved its efficacy 
in the field of biological fluiddynamics, The present work aims at performing a numerical study on the 
microorganism locomotion using the immersed boundary method proposed by Peskin[1]. A two-dimensional 
model of the microorganism is modeled as thin elastic filament described as a sine wave. The neutrally 
buoyant organism undergoing deformations is immersed in a viscous and incompressible fluid. The fluid 
quantities are described using Eulerian coordinates and the immersed body is represented by Lagrangian 
coordinates. The Eulerian and Lagrangian variables are connected by the Dirac delta function. The 
Navier-Stokes equations governing the fluid flow are solved using the fractional step method on a staggered 
Cartesian grid system. The developed numerical code in FORTRAN will be validated by comparing the 
numerical results with the available results.
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1. INTRODUCTION

Most of the microorganisms swims in fluid by passing 
waves of lateral displacement down the body. Phenomenon 
like motion of a sperm, beating of cilia, bacterial flagellar 
propulsion, are observed at low Reynolds number whereas 
aquatic organisms like fish, eel, cetacean etc propels 
themselves in fluid where the Reynolds number is very 
high. At high Reynolds number flow, the inertial forces 
are dominant. But at low Reynolds number, the viscous 
forces are more significant. The typical Reynolds number 
for fish and swimming eel are about 10,000 whereas in 
the case of sperm and bacterial flagellar motion it is about 
0.001. Since the swimming of microorganisms are due to 
the travelling of wave down the body, the relevant 

parameters related to swimming depends on the amplitude, 
wavelength and frequency of the travelling wave in 
addition to Reynolds number of the flow.

This paper presents a computational model which 
mimics that of a microorganism and we are aimed at 
studying its propulsion in a viscous and incompressible 
fluid[2]. The organism is assumed to be massless and 
elastic. The organism which undergoes deformations within 
the fluid exerts forces on the fluid and affects the motion 
of the fluid. This is a typical fluid-structure interaction 
problem. Hence to simulate such a challenging problem 
we employed the immersed boundary method proposed by 
Peskin[1]. Immersed boundary method has proved its 
ability to handle the simulation of complex flow problems 
in computational fluid dynamics. Peskin[3] developed the 
immersed boundary method for the simulation of heart 
valves. The entire simulation was carried out on a 
Cartesian grid which did not conform to the geometry of 
the heart and the effect of immersed boundary on the 
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flow was employed through a momentum forcing 
procedure. Various modifications are made to this method 
by different researchers emerging it as an efficient 
numerical tool in handling complex flow simulations in the 
field of computational fluid dynamics. The main advantage 
of immersed boundary method is the easiness in grid 
generation since it employs regular cartesian grid. When 
compared with the unstructured grid method used for the 
complex flow problems, the immersed boundary method is 
proved to be superior in the case of memory and CPU 
savings. 

The immersed boundary method utilizes momentum 
forcing and a Cartesian grid Navier-Stokes solver. Based 
on how the momentum forcing is employed in the 
Navier-Stokes equation, immersed boundary method has 
been classified into two-continuous forcing approach and 
discrete forcing approach[4].The discrete version of 
immersed boundary method employs interpolation 
techniques to obtain the desired no-slip conditions at the 
boundary and the momentum forcing is obtained directly 
from the discretized Navier-Stokes equations[5]. The 
continuos forcing approach of immersed boundary method 
utilizes Eulerian vairables for the fluid region and 
Lagrangian variables for the solid region. The interaction 
between these two variables are linked by the Dirac delta 
function. The continuous forcing approach is used for the 
simulation of fluid-flexible body interaction. For the 
simulation of elastic bodies interacting with the fluid, the 
Lagrangian force is the elastic force which can be 
obtained by applying Hooke's law. But when dealing with 
rigid bodies, the law is not well posed. Hence in such 
cases, methods like virtual boundary method proposed by 
Goldstein et al.[6] is employed. This method is based on 
the feedback forcing scheme which can enforce the no-slip 
boundary conditions on the rigid boundary immersed in 
the fluid. The basic difference between virtual boundary 
method and that of Lai and Peskin[7] is that, the 
boundary points are exactly prescribed in the former 
method, but allowed to move slightly from their 
equilibrium positions in the latter. Recently, Shin et al.[8] 
proposed a new version of immersed boundary method 
which combines the feed back forcing scheme of virtual 
boundary method along with Peskin's regularized delta 
function. Huang et al.[9] proposed an immersed boundary 
formulation simulating flexible filaments in uniform flow. 
In their simulation, the Eulerian fluid motion and the 
Lagrangian filament motion were solved independently and 
their interaction force was explicitly calculated using a 
feedback law.

 The present work is based on the continuous forcing 
approach of immersed boundary method. We employed the 
immersed boundary method proposed by Fauci L J and C 
S Peskin[2]. The computational model presented here is 
solved in a two-dimensional fluid domain in which the 
organism undergoing time-dependent undulations is 
immersed. The organism is modeled as a single filament. 
Eventhough the flow is viscous dominant we solved the 
full Navier-Stokes equation considering the inertial effects 
also. The present work is a preliminary work towards the 
simulation of bacterial flagellar propulsion and bacterial 
flagellar bundling.

2. NUMERICAL METHOD

The Navier-Stokes equation for the incompressible 
viscous fluid flow is given by,

 2. p
t

� �
� �	 � � � 	 � 	� �
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and the continuity equation is given by,

. 0� �u (2)

where �  is the density of the fluid, �  is the viscosity 
of the fluid, p is the pressure and f is the external force 
per unit volume applied to the fluid. This force is termed 
as the momentum forcing function in the Navier-Stokes 
equation. The external force f  is depended on the 
position of immersed boundary points and the time. Here, 
the Eulerian force density tf (x, )  is computed from the 
Lagrangian force density ( , )s tF as follows:

� � � �, ( , ) ( , )t s t s t ds�� �f x F x X (3)

The immersed boundary method used in the present 
work employs an elastic energy function  to 
compute the Lagrangian force density [2]. The 
elastic energy function is time-dependent which also 
depends upon the configuration of consecutive triples of 
points along the boundary. The Lagrangian force acting on 
the point Xk is computed from the energy function as its 
negative derivative with respect to Xk.
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The elastic energy function is determined as below:
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where s�  is the resting length and � �ˆ 0,0,1z �  is the unit 
vector. The above equation signifies that for each 
immersed boundary point , the energy function has two 
contributions , energy from stretched springs and energy 
from bending the entity. The first term in the above 
equation represents the elastic stretching energy according 
to Hooke's law of springs. The second term represents the 
bending energy term. The above two energies are used to 
used to define the elastic properties of the immersed 
boundary point. The first term helps in determining the 
size of the entity and prevent the immersed boundary 
points from separating far enough to allow the flow to 
cross the boundary. The second term helps in determining 
the shape of the immersed boundary , especially they are 
useful to prevent the boundary from becoming too 
irregularly shaped near any point. S1 and S2 are the 
stiffness constants which depend upon the arc length s�  
and determine how strictly the constraints are enforced. 
The role of stiffness constants can be viewed in two ways 
[2]:

(1) Physiological parameters:- The organism's muscular 
structure will tend to generate a predetermined swimming 
motion but the effect of the fluid can alter this motion; 
how much alteration depends on the size of S1 and S2.

(2) Numerical parameters:- The swimming motion of 
the creature relative to itself is completely specified in 
advance. Then S1 and S2 should be taken as large as 
possible. The term Ck(t) is the driving function which 
establishes the shape and time dependence of the 
swimming motion. But the actual displacement and 
swimming speed are determined from the fluid flow. 

The energy function defined above can be employed to 
enforce many different configurations, but in the present 
work we assumed the following configuration,

� �siny a ks t#�  (6)

where a  is the amplitude of the wave, k  is the wave 
number and #  is the frequency. For the constant 
amplitude of the wave, the driving function can be derived 

as follows[2]:

� � � �2 3 sin
k

C t k a s ks t#� �  (7)

The velocity of a material point of the microorganism 
is determined from the fluid velocity at that point. A four 
point Dirac delta function is employed here for the 
effective transfer of Eulerian and Lagrangian variables. 
Hence the velocity of material point of the organism is 
obtained as:

� � � � � �� �, , ,s t t s t d�� �U u x x X x (8)

where � �,s tU  is the velocity of the immersed boundary 
point and � �,tu x  is the fluid velocity. Here (x)�  is the 
Dirac delta function defined as follows:

2
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� � � �

(9)

where � �,k kx y  and � �,i jx y  are Lagrangian and Eulerian 
grid points. A four point delta function is employed here 
for the transformation of quantities between Lagrangian 
and Eulerian grids.
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The computed material point velocity is used for moving 
the immersed boundary point from its current position to 
the new position.
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In short, the numerical procedure involves, determining 
the Lagrangian force density defined on boundary points 
using the elastic energy function, spreading this force 
density to the Eulerian grid to get the Eulerian force 

한국전산유체공학회제 3 발표장166
C F D 응 용



Fig.1 Snapshot of filament and flow field at t=1.5 sec. Fig.2 Snapshot of filament and flow field at t=1.7 sec.

density, solving the Navier-Stokes equation to obtain the 
flow field and then interpolating the fluid velocity field to 
boundary points and moving the boundary at this local 
fluid velocity. This completes one time loop.

3. RESULTS AND DISCUSSIONS

In the present work, the swimming of a microorganism 
of finite length is studied in periodic fluid domain. The 
flow in X-direction is assumed to be periodic. A square 
domain of size 0.2cm x 0.2cm is used as the 
computational domain. The microorganism is modeled as a 
finite filament in the form of sine wave with the 
immersed boundary points describing it are initialized to 
lie along the specified sine wave, with the center line 
corresponding to the center of the computational domain.

A staggered grid system is adopted here with finite 
volume discretization for the Navier-Stokes equation. 
Fractional step procedure in which a pseudo-pressure term 
is used to satisfy the continuity is employed here for 
solving the Navier-Stokes equation. We assumed a constant 
amplitude from the head to tail of the organism. We used 
a uniform grid system of 64 x 64 for the fluid domain 
and 128 grid points are used for describing the filament. 
By employing this, no fluid will be allowed to leak 
through the immersed boundary points. We set density, 

31 /gm cm� � ,viscosity, 0.01 / .gm s cm� � ,frequency, 18 s# * � , 
wave number, 120k cm* �  and wavelength, 0.1cm+ � .The 

amplitude of the waving motion is considered to be 
0.01a cm� , which is 10% of the wavelength which seems 

to be more substantial. The Reynolds number is calculated 
based on the wavelength which is given by:

2Re 0.6
k
#

,
� -

 

The time period of motion is 0.25 sec. The code is run 
for eight periods, ie, 2 sec to get a steady periodic state. 
The stiffness constants S1 and S2 are selected in such a 
way that the filament is almost rigid. 

We present the numerical simulation results on the 
motion of the organism during a particular period of 
motion. The snapshots of filament and flow field at four 
different instants during the last period of motion is shown 
in fig.1-4. The wave propagates over the filament from 
left to right and the resulting swimming motion is towards 
the left. It is verified that similar results has been obtained 
by Fauci L J and C S Peskin[2] in their numerical model 
which is the basis of this work.

The above numerical simulation results are generated by 
developing a code in FORTRAN. The present work is 
under progress. Presently, we are investigating on the 
proper validation of the developed code by comparing the 
obtained numerical results with available results. For this, 
first we will model the filament as an infinite sheet 
swimming in a periodic fluid domain. Taylor[10], Tuck[11] 
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Fig.3 Snapshot of filament and flow field at t=1.8 sec. Fig.4 Snapshot of filament and flow field at t=2.0 sec.

and Katz[12] has performed similar studies. Taylor‘s 
studies are designed for small amplitude motion, and zero 
Reynolds number flow, whereas Tuck analyzed the case of 
small amplitude motion taking inertia into account. Both 
these studies are limited to small amplitude motions. Katz 
analyzed the propulsion of an infinite waving sheet parallel 
to the walls of the channel. Lubrication theory was used 
to examine the case where the width of the channel was 
much smaller than the wavelength of the sheet. We are 
presently performing the above studies based on the 
present numerical model which will be a good validation 
of our developed code. The validation results will be 
presented in the presentation. Also we are focussing on a 
detailed studies on the swimming phenomenon of the 
organism with respect to various wave parameters and 
Reynolds numbers. The results of these studies will be 
included in the presentation.

4. CONCLUSIONS

The propulsion of a microorganism which is modeled 
as an elastic massless filament, in an incompressible 
viscous fluid is studied using the immersed boundary 
method. A time dependent elastic energy function is used 
to obtain the necessary forces on the immersed boundary 
points. A Dirac delta function is used to spread these 
forces into the fluid region to get the force exerted by the 
organism on the fluid. The Navier-Stokes equation are 

solved on a staggered Cartesian grid with finite volume 
discretization and fractional step method to get the flow 
velocity field. The obtained fluid velocity is then used to 
move the organism from its current position to new 
position. As a result, the wave travels from left to right 
over the filament during the time and the organism swims 
towards right. With regard to this, our results matches 
with the real physical situation of microorganism 
swimming at low Reynolds number flow. The present 
study is under progress. The validation of the developed 
code in FORTRAN by comparing the simulation results 
for an infinite sheet swimming in the fluid with that of 
available results and the simulation results based on the 
various wave parameters and Reynolds number are under 
investigation. The results of the above studies will be 
presented in presentation.
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