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Abstract 
 
The nonlinear free-surface motions interacting with a floating body were investigated using the Moving Particle 

Semi-implicit (MPS) method proposed by Koshizuka and Oka [6] for incompressible flow. In the numerical me-
thod, more realistic Lagrangian moving particles were used for solving the flow field instead of the Eulerian ap-
proach with a grid system. Therefore, the convection terms and time derivatives in the Navier-Stokes equation can 
be calculated more directly, without any numerical diffusion, instabilities, or topological failure. The MPS method 
was applied to a numerical simulation of predicting the efficiency of floating-type breakwater interacting with 
waves. 
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1. Introduction 

In order to efficiently utilize the coastal area, vari-
ous kinds of breakwater should be studied and devel-
oped. Although fixed breakwaters have excellent per-
formance onshore, they are associated with economi-
cal and technical problems in their construction off-
shore, as well as environmental by restricting the cir-
culation of seawater. However, floating-type breakwa-
ters have many advantages compared to fixed ones, i.e. 
flexibility of future extensions, mobility, preservation 
of environments and economical efficiency, etc. As a 
result, a few investigations have proposed to improve 
the performance of floating breakwaters [1, 2, 3, 5, 8, 
11, 12, 14]. Of these, most numerical approaches relat-
ing to floating breakwaters have focused on develop-
ing numerical techniques that capture the fully nonli-
near free-surface motion based on a grid system. 

However, there are many different approaches that do 
not employ a grid system; for example, the so-called 
particle methods with a fully Lagrangian treatment [6, 
10]. The particle methods seem to be more feasible 
and effective than conventional grid methods for solv-
ing the flow fields associated with complicated boun-
dary shapes or coupling effects between a fluid and 
structure. 

In the present study, the efficiency of a floating-type 
breakwater interacting with waves was investigated 
numerically, using the Moving Particle Simulation 
(MPS) method supposed by Koshizuka and Oka [6] 
for an incompressible flow. In this method, more 
realistic Lagrangian moving particles were used for 
solving the flow field rather than an Eulerian approach 
with a grid system. Therefore, the convection terms 
and time derivatives in the Navier-Stokes equation can 
directly be calculated, without any numerical diffusion, 
instability or topological failure. The method consisted 
of particle interaction models to represent the gradient, 
diffusion, incompressibility and free-surface boundary 
conditions. 

†This paper was presented at the 2nd International Symposium on Shal-
low Flows(ISSF), Hong Kong, December 2008. 
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2. Moving particle simulation 

2.1 Governing function 

The governing equations for incompressible visc-
ous flows are the continuity and Navier-Stokes equa-
tions, as follows: 
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where   is the density, t  the time, u


 the veloci-

ty vector,   the gradient, P  the pressure,   the 

kinematic viscosity and F


 the external force. 
The left-hand side of the Navier-Stokes equation 

(2) denotes a Lagrangian differentiation, which is 
directly calculated by moving particles in a Lagran-
gian manner. The right-hand side consists of the pres-
sure gradient, viscous and external force terms. To 
simulate incompressible flows, all terms expressed by 
differential operators should be replaced by the par-
ticle interaction models of the MPS method. 

 
2.2 Kernel function 

Continuous fluid can be represented by physical 
quantities of coordinates, mass, velocity components 
and pressure for particles. The governing equations 
written with partial differentiations are transformed 
to the equation for particle interactions. The particle 
interactions in the MPS method are based on a kernel 
function. In this study, the following function was 
employed. 
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where the distance between two particles is given by 
r , and er  represents the effective range of the par-

ticle interactions. In Fig. 1, the kernel becomes zero 
when er r . Since the area covered by this weight 

function is bounded, a particle interacts with a finite 
number of neighboring particles. The radius of the 
area of interaction is determined by a parameter, er . 

The weighting of an interaction between two particles 
can be described by a kernel function, i.e. the nearer 

the distance between two particles, the larger the 
weight of the interaction. If the distance between two 
particles is quite long, the weight of the interactions 
can be neglected. 

 
2.3 Gradient model 

A gradient vector between two particles, i  and 
j , possessing scalar quantities, i  and j , at 

coordinates, ir and jr , is simply defined by 
2

( )( )j i j i j ir r r r    , as shown in Fig. 2. The 

gradient vector at the particle i  is given by the 
weighted average of the gradient vectors: 
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where d  is the number of space dimensions, and 

0n  the particle number density, which is fixed for 
incompressibility under the initial condition of the 
particle arrangement. The particle number density is 
calculated by the following equation. 
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The fluid density is proportional to the particle 

number density. 
 

2.4 Diffusion model 

The diffusion of   at the particle i  is described 

by 
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where   is a parameter where the increase in the 
variance is equal to that of the analytical solution. 

The diffusion can be modeled by the distribution 
of a physical value from a particle to its neighboring 
particles using the kernel function (Fig. 3). The mod-
el is conservative, since the quantity lost by the par-
ticle, i , is only obtained by the neighboring particles, 
j . 
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Fig. 1 Kernel function. 

 

 
Fig. 2 Gradient model. 

 

 
Fig. 3 Diffusion model. 

 

2.5 Incompressibility model 

The fluid density is represented by the particle 
number density. Thus, the continuity equation (1) is 
fulfilled by fixing the particle number density via 
simulation. This means that the particle number den-
sity, 0n , should be constant. 

The algorithm for incompressibility in the MPS 
method is similar to that in the SMAC (Simplified 
Marker-and-Cell) method with a grid system. There 
are two stages in each time step: in the first stage, the 
temporal velocity components and coordinates of the 

particle i  are obtained using diffusion, external 
forces and convection terms, which are explicitly 
calculated with the values in the (n)-th time step. 
Thus the temporal coordinates *

ir


 of the particle i  

can be written using the temporal velocity 
*
iu


 , as 
follows: 
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In equation (8), the convective term can be simply 

calculated via the moving particles according to the 

temporal velocity components, 
*
iu


. Due to the 
movement of particles in the explicit first stage, the 
particle number densities might be changed, i.e. 

* 0n n . 
In the second stage, the temporal particle number 

densities, *
in , are calculated from the temporal 

coordinates, 
*
ir


. The Poisson equation for a pressure 
is calculated implicitly [6]: 
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The right hand side of equation (9) represents the 

deviation of the temporal particle number density 
from a constant value. The role of the right hand side 
in equation (9) maintains the particle number densi-
ties during the simulation. The left hand side of equa-
tion (9) is discretized by the diffusion model (6). Fi-
nally, simultaneous equations expressed by a linear 
symmetric matrix are obtained, which are solved 
using an iteration method. In the present study, the 
CG (Conjugate Gradient) method was employed as 
the iterative solver. 

Fig. 4 shows the algorithm procedure for the 
present method. After updating the pressure field, the 

velocity correction 
'
iu


 is calculated by the following 
equation: 
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Finally, the velocity components and coordinates 

of particles in the ( 1n  )-th time step are calculated 
from the following equations: 
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2.6 Boundary condition 

As the free-surface boundary condition, the kine-
matic and dynamic boundary conditions are imposed. 
The kinematic condition can be directly satisfied by 
moving particles on the free-surface. In the present 
method, it was straightforward to track the free-
surface particles, because the location of the free-
surface was easily obtained as a result of the fully 
Lagrangian treatment of the particles. 

As shown in Fig. 5, in the vicinity of the free-
surface, the particle number densities were decreased, 
as the empty air region, where no particles exist in the 
case of single-phase problem, was included. Thus, the 
particles satisfying the following simple condition 
were considered on the free surface. 

 
* 0

i
n n   (13) 
 

where   is a parameter below 1.0 ; 0.97   was 

selected in this study. Using this free-surface boun-
dary condition, the simulation of fragmentation and 
coalescence of a fluid is available. The free-surface 
parameter,  , was used to judge whether the par-

ticles were on the free-surface. 
Conversely, the dynamic condition can be satisfied 

by taking the atmospheric pressure ( 0atmP P  ) on 

the free-surface particles. This condition was fulfilled 
in the procedure of solving the Poisson equation (9). 

For the wall boundary condition, as shown in Fig. 6, 
the wall particles were set according to the solid 
boundary, with dummy particles inside the solid wall. 
In the particle method, it is important to obtain useful 
information on the physical quantities from the 
neighboring particles. The physical quantities were 
calculated by the interaction with neighboring par-
ticles. The wall particles will be directly in contact 
with both the fluid and dummy particles, which are 
involved in the pressure correction calculation and 
prevent the concentration of particles near the wall. 
They also have zero velocities when the walls are 
treated as non-slip. The dummy particles contain ve-
locity components, which are installed in the same 
way as the dummy cells in grid methods. Three layers 
of particles are located to ensure that the particle 
number density is accurately computed. 
 
2.7 Treatment of passively moving solid model 

In this section, two numerical treatments have been 
introduced for solving the motion of a floating body; 

one being the conventional method using the equation 
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Fig. 4 Algorithm procedure of MPS. 

 

 
Fig. 5 Free-surface boundary condition. 

 

 
Fig. 6 Wall boundary condition. 

 

of motion, and the other is the passively moving-solid 
model suggested by Koshizuka and Oka [6], which 
describes the motion of a rigid body in a fluid. 
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Sueyoshi [13] proposed another method, which 
solves the equation of motion explicitly, to determine 
the motion of a rigid body in a fluid. The force and 
moment acting on the surface of a rigid body are di-
rectly calculated by the integration of the pressure on 
its surface, as shown in Fig. 7. The equation of mo-
tion for a floating body in 2-dimension can be calcu-
lated through the translation and rotational angles of 
a floating body. 

 
2
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gd r
m F

dt
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Here, m  is mass of the solid, gr


 the center of 

gravity,   the rotational angle for rotational axis, 

zzI  the moment of inertia for rotational axis and k


 

the unit vector normal to the 2-dimensional plane. 
The hydrodynamic force, F


, and moment, M


, 

affect the translational and rotational motions, re-
spectively, and are calculated via: 
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Here, in


 and idS  are the normal vector and the 

local area of a particle on the surface of a rigid 
body, respectively. 

Conversely, Koshizuka and Oka [6] proposed a 
passively moving-solid model to describe the mo-
tion of a rigid body in a fluid. Here, a solid is as-
sumed to be a collection of particles held together 
by intermolecular forces. The solid particles are 
initially calculated using the same incompressible 
algorithm as for fluid particles. At this stage, the 
coupling effect between the individual solid par-
ticles is not considered. As a result of the simula-
tion, at this stage the solid deforms; therefore the 
relative locations of the solid particles should be 
corrected using the equations (18)~(23). 

At the center of a rigid body, the translational ve-
locity, T


, and rotational velocity, R


, are calcu-

lated as given in the following equations: 
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Here, the relative coordinates between solid par-
ticles, iq


, and the moment of inertia, I , are given 

as: 
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Here, gr


 is the center of gravity, which is calcu-

lated as follows: 
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Finally, the velocity vector of the solid particles 

was replaced by: 
 

i iu T q R  
  

 (23) 
 
In the next time step, the fluid particles are 

slightly affected by this solid motion via an incom-
pressibility calculation. 
 

 

Fig. 7 Schematic of motion equation for 2D floating body simu-

lation. 

 

 

Fig. 8 Initial configuration of 2D floating body simulation. 
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(a) Moving solid model 

(b) Equation of motion 
Fig. 9 Floating body motion of coupled with free-surface motion. 

 

 
3. Numerical simulation and discussions 

3.1 Floating-body simulation 

To verify the simulation of a floating body with 
free-surface, the motions of a 2D floating rectangular 
barge, in an oscillating water-filled (density=1000 
kg/m3) tank, are simulated in the time domain using 
both the equation of motion and the passively mov-
ing-solid model. 

The initial geometry and set-up are shown in Fig. 
9. The height and width of the tank were 1.0 and 
0.7m, respectively. The top of the tank was opened 
and the water depth was 0.3m. The floating body’s 
height and width were 0.1 and 0.3m, respectively. 
The body was initially positioned in the center of the 
tank. The specific gravity and density of the body 
were 0.5 and 500kg/m3, respectively. The initial dis-

tance between particles, 0l  , was 0.01m, with the 
total number of particles being 4,000. The movement 
of the tank followed a sinusoidal function (Eq. 24); 
therefore, a harmonic flow field was created in the 
tank. 

 

0( ) sin(2 / )A t A t T  (24) 
 

Here, the amplitude 0A  and period T of the 
movement were 0.01m and 1.0sec, respectively. 

 Fig. 9 shows snap-shots of the simulated results 
for the motion of the floating body interacting with a 
free-surface. Fig.10 (a) shows the results on applica-
tion of the moving solid model; whereas, Fig.10 (b) 
shows the results for the equation of motion; both 
cases looked very similar. 

Fig. 10 shows the corresponding time histories of 
the roll motions of the floating body. Both results are 
appeared to be very close to the anticipated period of 
1sec. Due to the standing wave formed inside the 
tank, the amplitudes were modulated. The slight dis-
crepancy between the two sets of results might have 
been caused by the different algorithm and the non-
physical pressure fluctuation in the pressure integra-
tion used for the equation of motion. From this com-
parison, the use of the passively moving-solid model 
was validated, which is a simpler algorithm and 
computationally more economical compared to the 
equation-of-motion method. For the ensuing exam-
ples shown in this paper, the passively moving solid 
model was employed to calculate the motion of a 
floating body. 
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Fig. 10 Time history of roll angle of floating body. 

 
3.2 Numerical prediction on performance of float-

ing-type breakwater 

The numerical predictions on the performance of a 
floating-type breakwater were performed. The initial 
geometry for the simulation is illustrated in Fig.11. 
The floating breakwater, fixed by a hinge to the bot-
tom, was located in 2.0m left from the piston-type 
wavemaker. The wave absorber was located to the 
right of the floating breakwater to absorb the wave 
made by the wavemaker. The viscous effects and sur-
face tension were disregarded in this simulation. The 
floating breakwater was assumed to be rigid and 
composed of solid particles. The total simulation time 
was 20.0sec. 

When the wave generated by the wavemaker had 
fully developed, the performance of the floating 
breakwater was computed. The movement of the pis-
ton-type wave-maker follows a sinusoidal function 
(24). 

The period and length of the generated waves by 
oscillating wave-maker are shown in Table 1. The 
generated wave height was 0.2m with low and high 
tide levels of 0.82 and 0.2m, respectively. The total 
number of particles used for the simulation is about 
25000. The densities of the floating breakwater and 
water were 500 and 1000kg/m3, respectively. The 
time increments were varied under the Courant’s sta-
bility condition. 

The wave height and length according to the time 
increments were measured at 5.0m from the wave-
maker, without a floating breakwater. The numerical 
prediction on the performance of the floating break-
water was performed after the wave conditions of the 
simulated results, without a floating body, were com-

pared with the simulated conditions shown in Table 1. 
The performance of the breakwater at low and high 
tide levels were calculated via the measurement of the 
wave height at 4.0 and 6.0m from the wavemaker. 
The transmissivity can be defined as: 

 

(%) 100
Output wave height

Transmissivity
Input wave height

  (25) 

 
where the initial wave elevation without a body con-
dition was considered . 

 
Table 1 Principal parameter for wavemaker. 
 

Prototype 
Model Type 

Low Tide High Tide 

Period
[ sec ]

Wave
Length
[ m ] 

Period
[ sec ]

Wave 
Length 
[ m ] 

Period 
[ sec ] 

Wave
Length
[ m ] 

4.0 24.98 1.285 2.498 1.272 2.498 

4.5 31.62 1.479 3.162 1.446 3.162 

5.0 39.03 1.698 3.903 1.638 3.903 

 

 
Fig. 11 Schematic of set up for breakwater. 
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Fig. 13 Transmission rate of floating breakwater according to 

the wave period. 
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(a) Low tide level                (b) High tide level 
Fig.12 Free-surface deformation and motion of floating breakwater interacting with waves (Period=4.5sec, Wave length 

=31.62m). 
 

Fig. 12 shows the free-surface deformation and 
motion of the floating breakwater interacting with 
waves. In the case of the low tide level, the breakwa-
ter was inclined to the advancing direction of the 
waves. In the case of the high tide level; however, the 
breakwater was moved elliptically, based on its initial 
position. 

Fig. 13 depicts the wave transmissivity as a func-
tion of the wave period. The wave transmissivity of 
the floating breakwater was indicated to be higher, at 
around a period=4.5sec, and was more effected at the 
low than high tide level. 
 

4. Conclusions 

The prediction of the performance of a floating-

type breakwater was investigated numerically using 
the MPS method proposed by Koshizuka and Oka [6] 
for an incompressible flow. 

From the simulated results, the present method ap-
peared to be applicable to the complicated wave mo-
tions interacting with a floating body and for the pre-
diction of the transmission coefficients of a floating 
breakwater with moored lines. 
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