• 제목/요약/키워드: LMIS

검색결과 244건 처리시간 0.023초

포화 구동기를 갖는 시간 지연 시스템의 제어기 설계 (Robust stabilization of uncertain time-delay systems with saturating actuator)

  • 조현주;박주현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.702-704
    • /
    • 2004
  • This paper focuses on the problem of asymptotic stabilization for uncertain time-delay systems with saturating actuator. We propose a state feedback controller which maximizes the delay bound for guaranteeing stability of the system. Then, based on the Lyapunov method, a delay-dependent stabilization criterion is devised by taking the relationship between the terms in the Leibniz-Newton formula into account. The criterion is represented in terms of LMIs, which can be solved by various efficient convex optimization algorithm. Numerical examples are given to illustrate our main method.

  • PDF

제한된 구동기 용량을 갖는 시간지연 선형시스템의 $H_{\infty}$ 제어 ([ $H_{\infty}$ ] Control of Time-Delayed Linear Systems with Limited Actuator Capacities)

  • 이연규;김진훈
    • 전기학회논문지
    • /
    • 제56권9호
    • /
    • pp.1648-1654
    • /
    • 2007
  • In this paper, we consider the design of $H_\infty$ high-gain state feedback control for time-delayed linear systems with limited actuator capacities. The high-gain control means that the control permits the predetermined degree of saturation. Based on new Lyapunov-Krasovskii functional, we derive a result in the form of matrix inequalities. The matrix inequalities are consisted of LMIs those confirm the positive definiteness of Lyapunov- Krasovskii functional, satisfaction of predetermined degree of saturation, reachable set and $L_2$ gain constraint. The result is dependent on the bound of time-delay and its rate, predetermined degree of saturation, actuator capacity, and the allowed size of disturbances. Finally, we give a numerical example to show the effectiveness and usefulness of our result.

LMI-Based Design of Fuzzy Controllers for Takagi-Sugeno Fuzzy Systems

  • Kim, Jinsung;Park, Jooyoung;Park, Daihee
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.326-330
    • /
    • 1998
  • There have been several recent studies concerning the stability of fuzzy control systems and the synthesis of stabilizing fuzzy controller. This paper reports on a related study of the TS(Takagi-Sugeno) fuzzy systems, and it is shown that the controller synthesis problems for the nonlinear systems described by the TS fuzzy model can be reduced to convex problems involving LMIs(Linear matrix inequalities). After classifying the TS fuzzy systems into two families based on how diverse their input matrices are, different controller synthesis procedure is given for each of these families. A numerical example is presented to illustrate the synthesis procedures developed in this paper.

  • PDF

ROBUST CONTROLLER DESIGN FOR IMPROVING VEHICLE ROLL CONTROL

  • Du, H.;Zhang, N
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.445-453
    • /
    • 2007
  • This paper presents a robust controller design approach for improving vehicle dynamic roll motion performance and guaranteeing the closed-loop system stability in spite of vehicle parameter variations resulting from aging elements, loading patterns, and driving conditions, etc. The designed controller is linear parameter-varying (LPV) in terms of the time-varying parameters; its control objective is to minimise the $H_{\infty}$ performance from the steering input to the roll angle while satisfying the closed-loop pole placement constraint such that the optimal dynamic roll motion performance is achieved and robust stability is guaranteed. The sufficient conditions for designing such a controller are given as a finite number of linear matrix inequalities (LMIs). Numerical simulation using the three-degree-of-freedom (3-DOF) yaw-roll vehicle model is presented. It shows that the designed controller can effectively improve the vehicle dynamic roll angle response during J-turn or fishhook maneuver when the vehicle's forward velocity and the roll stiffness are varied significantly.

GIS을 활용한 장기 미집행 도시계획시설 재정비에 관한 연구 (A Study on the Reformation of Long-term Unexecuted Urban Plan Facilities using GIS)

  • 안형준;이미지;고준환;이상미
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.491-494
    • /
    • 2006
  • Many urban-plan facilities were settled by the government in the need of infrastructure due to the rapid urbanization. The Constitutional Court judged that the exclusion of land-owners' private right to use their land did not accord with the Constitution, and the infringement of their right because of currently unexecuted facilities became the urgent task to be solved due to the revision of the Urban plan law revised on January 28, 2000. Accordingly, the government needed to establish a complete plan to review and rearrange the long-term unexcuted urban plan facilities. For this plan to be successful, we have constructed the database of unexecuted urban plan facilities by using GIS analysis technique in this research. Further, we will construct a basic database to manage the unexecuted urban plan facilities by utilizing the database we have constructed, computerized geographical information files of LMIS, urban plan facilities data of UPIS, and other information.

  • PDF

퍼지 리아푸노프 함수를 이용한 어파인 퍼지 시스템의 완화된 안정도 조건 (Relaxed Stability Condition for Affine Fuzzy System Using Fuzzy Lyapunov Function)

  • 김대영;박진배;주영훈
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1508-1512
    • /
    • 2012
  • This paper presents a relaxed stability condition for continuous-time affine fuzzy system using fuzzy Lyapunov function. In the previous studies, stability conditions for the affine fuzzy system based on quadratic Lyapunov function have a conservativeness. The stability condition is considered by using the fuzzy Lyapunov function, which has membership functions in the traditional Lyapunov function. Based on Lyapunov-stability theory, the stability condition for affine fuzzy system is derived and represented to linear matrix inequalities(LMIs). And slack matrix is added to stability condition for the relaxed stability condition. Finally, simulation example is given to illustrate the merits of the proposed method.

크기가 제한된 제어기를 갖는 비정합 불확실성의 가변구조 시스템을 위한 점근 안정 영역 추정 (Estimation of the Asymptotic Stability Region for a Mismatched Uncertain Variable Structure System with a Bounded Controller)

  • 최한호
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.600-603
    • /
    • 2007
  • We propose a method to estimate the asymptotic stability region(ASR) of a mismatched uncertain variable structure system with a bounded controller. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix. Using linear matrix inequalities(LMIs) we estimate the ASR and we show the quadratic stability of the closed-loop control system in the estimated ASR. We also give a simple LMI-based algorithm for estimating the ASR. Finally, we give a numerical example in order to show the effectiveness of our method.

시간 지연을 가지는 비선형 마르코비안 점프 시스템의 퍼지 제어 (Stabilization for Markovian Jump Nonlinear Systems with Time-Delay via T-S Fuzzy Control)

  • 송민국;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.235-236
    • /
    • 2008
  • This paper is concerned with the stabilization problem of Markovian jump nonlinear systems with time-delay via Takagi-Sugeno (T-S) fuzzy control approach. The T-S fuzzy models are employed to represent nonlinear systems with Markovian jump parameters and time-delay. The purpose of this paper is to design a mode-independent fuzzy controller such that the closed-loop Markovian jump fuzzy system is stochastically stable. Based on a stochstic Lyapunov function, stabilization sufficient conditions using a mode-independent fuzzy controller are derived for the Markovian jump fuzzy system in terms of Linear Matrix Inequalities (LMIs). Finally, a simulation example is presented to illustrate the effectiveness of the proposed method.

  • PDF

비정합 불확실성을 갖는 시스템을 위한 적응 슬라이딩 모드 제어기 설계 (Adaptive Sliding Mode Control Design for Mismatched Uncertain Systems)

  • 최한호
    • 조명전기설비학회논문지
    • /
    • 제24권2호
    • /
    • pp.39-43
    • /
    • 2010
  • 본 논문에서는 불확실한 다변수 시스템을 위한 적응 슬라이딩 모드 제어기의 LMI 기반 설계방법이 제시된다. LMI를 사용하여 슬라이딩 평면의 존재조건을 구한다. 그리고 외란의 놈 경계치를 추정하고 안정성을 보장할 적응 스위칭 궤환 제어기 알고리즘을 제시한다. 마지막으로 제안된 방법의 유효성을 보이기 위해 크레인 모델을 제어하기 위한 설계 예를 제시한다.

비정합 불확실성을 갖는 시스템을 위한 적분 슬라이딩 모드 제어기의 LMI 기반 설계 (LMI-based Design of Integral Sliding Mode Controllers for Mismatched Uncertain Systems)

  • 최한호
    • 전기학회논문지
    • /
    • 제59권8호
    • /
    • pp.1441-1443
    • /
    • 2010
  • This paper presents an LMI-based method to design an integral sliding mode controller for for a class of uncertain systems with mismatched unstructured uncertainties. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. Using LMIs we derive an existence condition of a sliding surface. And we give a switching feedback control law. Finally, we give a numerical design example in order to show that the proposed method can be better than the existing results.