• Title/Summary/Keyword: LIGBT

Search Result 44, Processing Time 0.019 seconds

Electrical Characteristics of Novel LIGBT with p Channel Gate and p+ Ring at Reverse Channel Structure (p+링과 p 채널 게이트를 갖는 역채널 LIGBT의 전기적인 특성)

  • Gang, Lee-Gu;Seong, Man-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.3
    • /
    • pp.99-104
    • /
    • 2002
  • lateral insulated gate bipolar transistors(LIGBTs) are extensively used in high voltage power IC application due to their low forward voltage drops. One of the main disadvantages of the LIGBT is its scow switching speed when compared to the LDMOSFET. And the LIGBT with reverse channel structure is lower current capability than the conventional LIGBT at the forward conduction mode. In this paper, the LIGBT which included p+ ring and p-channel gate is presented at the reverie channel structure. The presented LIGBT structure is proposed to suppress the latch up, efficiently and to improve the turn off time. It is shown to improve the current capability too. It is verified 2-D simulator, MEDICI. It is shown that the latch up current of new LIGBT is 10 times than that of the conventional LIGBT Additionally, it is shown that the turn off characteristics of the proposed LIGBT is i times than that of the conventional LIGBT. It is net presented the tail current of turn off characteristics at the proposed structure. And the presented LIGBT is not n+ buffer layer because it includes p channel gate and p+ ring.

A New Snap-back Suppressed SA-LIGBT with Gradual Hole Injection (점진적인 홀의 주입을 통해 스냅백을 억제한 새로운 구조의 SA-LIGBT)

  • Jeon, Jeong-Hun;Lee, Byeong-Hun;Byeon, Dae-Seok;Lee, Won-O;Han, Min-Gu;Choe, Yeol-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.113-115
    • /
    • 2000
  • The gradual hole injection LIGBT (GI-LIGBT) which employs the dual gate and the p+ injector, was fabricated for eliminating a negative resistance regime and reducing a forward voltage drop in SA-LIGBT. The elimination of the negative resistance regime is successfully achieved by initiating the hole injection gradually. Furthermore, the experimental results show that the forward voltage drop of GI-LIGBT decreases by lV at the current density of 200 $A/cm^2$, when compared with that of the conventional SA-LIGBT. It is also found that the improvement in the on-state characteristics can be obtained without sacrificing the inherent fast switching characteristics of SA-LIGBT.

  • PDF

LIGBT with Dual Cathode for Improving Breakdown Characteristics

  • Kang, Ey-Gook;Moon, Seung-Hyun;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.16-19
    • /
    • 2000
  • Power transistors to be used in Power Integrated Circuits(PIC) are required to have low on resistance, fast switching speed, and high breakdown voltage. The lateral IGBTs(LIGBTs)are promising power devices for high voltage PIC applications, because of its superior device characteristics. In this paper, dual cathode LIGBT(DCIGBT) for high voltage is presented. We have verified the effectiveness of high blocking voltage in the new device by using two dimensional devices simulator. We have analyzed the forward blocking characteristics , the latch up performance and turn off characteristics of the proposed structure. Specially, we have focused forward blocking of LIGBT. The forward blocking voltage of conventional LIGBT and the proposed LIGBT are 120V and 165V, respectively. . The forward blocking characteristics of the proposed LIGBT is better than that of the conventional LIGBT. This forward blocking comparison exhibits a 1.5 times improvement in the proposed LIGBT.

  • PDF

Analysis of The Dual-Emitter LIGBT with Low Forward Voltage Loss and High Lacth-up Characteristics (낮은 순방향 전압 강하와 높은 래치-업 특성을 갖는 이중-에미터 구조의 LIGBT에 관한 분석)

  • Jung, Jin-Woo;Lee, Byung-Seok;Park, San-Cho;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.164-170
    • /
    • 2011
  • In this paper, we present a novel Lateral Insulated-Gate Bipolar Transistor(LIGBT) structure. The proposed structure has extra emitter between emitter and collector of the conventional structure. The added emitter can significantly improve latch-up current densities, forward voltage drop (Vce,sat) and turn-off characteristics. From the simulation results, the proposed LIGBT has the lower forward voltage drop(1.05V), the higher latch-up current densities($2.5{\times}10^3\;A/{\mu}m^2$), and the shorter turn-off time(7.4us) than those of the conventional LIGBT.

Dual Anode LIGBT on SOI Subskates (이중 애노드 구조의 SOI LIGBT)

  • Choi, S.P.;Jeon, B.C.;Han, M.K.;Choi, Y.I.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.81-83
    • /
    • 2001
  • 새로이 제안한 이중 애노드 LIGBT(Dual Anode LIGBT)는 빠른 스위칭을 위한 기존의 단락 애노드 구조를 캐소드의 양쪽에 위치시킴으로써 단락 애노드 구조가 갖는 부성저항영역을 효과적으로 제거했다. 뿐만 아니라 순방향전압강하 또한 기존의 분리된 단락 애노드 LIGBT (Seperate Shorted Anode LIGBT)에 비해 30%의 개선 효과를 갖는다.

  • PDF

A Study on the Forward I-V Characteristics of the Separated Shorted-Anode Lateral Insulated Gate Bipolar Transistor (분리된 단락 애노드를 이용한 수평형 SA-LIGBT 의 순방향 전류-전압 특성 연구)

  • Byeon, Dae-Seok;Chun, Jeong-Hun;Lee, Byeong-Hun;Kim, Du-Yeong;Han, Min-Ku;Choi, Yeon-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.161-166
    • /
    • 1999
  • We investigate the device characteristics of the separated shorted-anode LIGBT (SSA-LIGBT), which suppresses effectively the negative differential resistance regime, by 2-dimensional numerical simulation. The SSA-LIGBT increases the pinch resistance by employing the highly resistive n-drift region as an electron conduction path instead of the lowly resistive n buffer region of the conventional SA-LIGBT. The negative differential resistance regime of the SSA-LIGBT is significantly suppressed as compared with that of the conventional SA-LIGBT. The SSA-LIGBT shows the lower forward voltage drop than that of the conventional SA-LIGBT.

  • PDF

A Study on the Dual Emitter Structure 4H-SiC-based LIGBT for Improving Current Driving Capability (전류 구동 능력 향상을 위한 듀얼 이미터 구조의 4H-SiC 기반 LIGBT에 관한 연구)

  • Woo, Je-Wook;Lee, Byung-Seok;Kwon, Sang-Wook;Gong, Jun-Ho;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.371-375
    • /
    • 2021
  • In this paper, a SiC-based LIGBT structure that can be used at high voltage and high temperature is presented. In order to improve the low current characteristic, a dual-emitter symmetrical around the gate is inserted. In order to verify the characteristics of the proposed device, simulation and design were conducted using Sentaurus TCAD simulation, and a comparative study was conducted with a general LIGBT. In addition, splitting was performed by designating a variable for the length of the N-drift region in order to verify the electrical characteristics of the minority carriers. As a result of the simulation it was confirmed that the proposed dual-emitter structure flows a higher current at the same voltage than the conventional LIGBT.

A New SOl LIGBT Structure with Improved Latch-Up Performance

  • Sung, Woong-Je;Lee, Yong-11;Park, Woo-Beom;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.283-285
    • /
    • 2001
  • In this paper, a new lateral insulated gate bipolar transistor (LIGBT) is proposed to improve the latch-up performance without current path underneath the n+ cathode region. The improvement of latch-up performance is verified using the two-dimensional simulator MEDICI and the simulation results on the latch-up current density are 3.12${\times}$10$\^$-4/ A/$\mu\textrm{m}$ for the proposed LIGBT and 0.94${\times}$10$\^$-4/ A/$\mu\textrm{m}$ for the conventional LIGBT. The proposed SOI LIGBT exhibits 3 times larger latch-up capability than the conventional SOI LIGBT.

  • PDF

Trench Shorted Anode LIGBT on 501 Substrates (트랜치 구조를 갖는 단락 애노드 SOI LIGBT)

  • Choe, Seung-Pil;Ha, Min-U;Han, Min-Gu;Choe, Yeon-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.5
    • /
    • pp.196-198
    • /
    • 2002
  • A trench shorted anode LIGBT (TSA-LIGBT) which decreases the device area and the forward voltage drop has been proposed and verified by 2D device simulations. The trench located in the shorted anode would form the shorted anode. The simulation results show that TSA-LIGBT decrease the device area by about 20% and the forward voltage drop by over 75% compared with the conventional ones. Also the troublesome negative differential resistance (NDR) regime has been eliminated successfully in the TSA-LIGBT.

A New SOI LIGBT Structure with Improved Latch-Up Performance

  • Sung, Woong-Je;Lee, Yong-Il;Park, Woo-Beom;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.30-32
    • /
    • 2001
  • In this paper, a new silicon-on-insulator (SOI) lateral insulated gate bipolar transistor (LIGBT) is proposed to improve the latch-up performance without current path underneath the n$^{+}$ cathode region. The improvement of latch-up performance is verified using the two- dimensional simulator MEDICI and the simulation results on the latch-up current density are 4468 A/cm2 for the proposed LIGBT and 1343 A/$\textrm{cm}^2$ for the conventional LIGBT. The proposed SOI LIGBT exhibits 3 times larger latch-up capability than the conventional SOI LIGBT.T.

  • PDF