• Title/Summary/Keyword: LDO Linear regulator

Search Result 4, Processing Time 0.018 seconds

LDO Linear Regulator Using Efficient Buffer Frequency Compensation (효율적 버퍼 주파수 보상을 통한 LDO 선형 레귤레이터)

  • Choi, Jung-Su;Jang, Ki-Chang;Choi, Joong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.11
    • /
    • pp.34-40
    • /
    • 2011
  • This paper presents a low-dropout (LDO) linear regulator using ultra-low output impedance buffer for frequency compensation. The proposed buffer achieves ultra low output impedance with dual shunt feedback loops, which makes it possible to improve load and line regulations as well as frequency compensation for low voltage applications. A reference control scheme for programmable output voltage of the LDO linear regulator is presented. The designed LDO linear regulator works under the input voltage of 2.5~4.5V and provides up to 300mA load current for an output voltage range of 0.6~3.3V.

A Design of Wide-Bandwidth LDO Regulator with High Robustness ESD Protection Circuit

  • Cho, Han-Hee;Koo, Yong-Seo
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1673-1681
    • /
    • 2015
  • A low dropout (LDO) regulator with a wide-bandwidth is proposed in this paper. The regulator features a Human Body Model (HBM) 8kV-class high robustness ElectroStatic Discharge (ESD) protection circuit, and two error amplifiers (one with low gain and wide bandwidth, and the other with high gain and narrow bandwidth). The dual error amplifiers are located within the feedback loop of the LDO regulator, and they selectively amplify the signal according to its ripples. The proposed LDO regulator is more efficient in its regulation process because of its selective amplification according to frequency and bandwidth. Furthermore, the proposed regulator has the same gain as a conventional LDO at 62 dB with a 130 kHz-wide bandwidth, which is approximately 3.5 times that of a conventional LDO. The proposed device presents a fast response with improved load and line regulation characteristics. In addition, to prevent an increase in the area of the circuit, a body-driven fabrication technique was used for the error amplifier and the pass transistor. The proposed LDO regulator has an input voltage range of 2.5 V to 4.5 V, and it provides a load current of 100 mA in an output voltage range of 1.2 V to 4.1 V. In addition, to prevent damage in the Integrated Circuit (IC) as a result of static electricity, the reliability of IC was improved by embedding a self-produced 8 kV-class (Chip level) ESD protection circuit of a P-substrate-Triggered Silicon Controlled Rectifier (PTSCR) type with high robustness characteristics.

A Low-Noise Low Dropout Regulator in $0.18{\mu}m$ CMOS ($0.18{\mu}m$ CMOS 저 잡음 LDO 레귤레이터)

  • Han, Sang-Won;Kim, Jong-Sik;Won, Kwang-Ho;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.6
    • /
    • pp.52-57
    • /
    • 2009
  • This paper presents a low-noise low-dropout linear regulator that is suitable for on-chip integration with RF transceiver ICs. In the bandgap reference, a stacked diode structure is adopted for saving silicon area as well as maintaining low output noise characteristic. Theoretical analysis for supporting the approach is also described. The linear regulator is fabricated in $0.18{\mu}m$ CMOS process. It operates with an input voltage range of 2.2 V - 5 V and provide the output voltage of 1.8 V and the output current up to 90 mA. The measured line and load regulation is 0.04%/V and 0.46%, respectively. The output noise voltage is measured to be 479 nV/$^\surd{Hz}$ and 186 nV/$^\surd{Hz}$ from 100 Hz and 1 kHz offset, respectively.

A Design of High PSRR LDO over Wide Frequency Range without External Capacitor (외부 커패시터 없이 넓은 주파수 범위에서 높은 PSRR 갖는 LDO 설계)

  • Kim, Jin-Woo;Lim, Shin-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.63-70
    • /
    • 2013
  • This paper describes a high PSRR low-dropout(LDO) linear regulator for wide frequency range without output-capacitor. Owing to both of the cascode compensation technique and the current buffer compensation technique in nested Miller compensation loop, the proposed LDO not only maintaines high stability but also achieves high PSRR over wide frequency range with reasonable on-chip capacitances. Since the external capacitor is removed by the proposed compensation techniques, the cost for pad is eliminated. The designed LDO works under the input voltage range from 2.5V to 4.5V and provides up to 10mA load current with the output voltage of 1.8V. The LDO was implemented with 0.18um CMOS technology and the area is 300um X 120 um. The measured power supply rejection ratio(PSRR) is -76dB and -43dB at DC and 1MHz, respectively. The operating current is 25uA.