• 제목/요약/키워드: Krull rings

검색결과 23건 처리시간 0.02초

PRIME FACTORIZATION OF IDEALS IN COMMUTATIVE RINGS, WITH A FOCUS ON KRULL RINGS

  • Gyu Whan Chang;Jun Seok Oh
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.407-464
    • /
    • 2023
  • Let R be a commutative ring with identity. The structure theorem says that R is a PIR (resp., UFR, general ZPI-ring, π-ring) if and only if R is a finite direct product of PIDs (resp., UFDs, Dedekind domains, π-domains) and special primary rings. All of these four types of integral domains are Krull domains, so motivated by the structure theorem, we study the prime factorization of ideals in a ring that is a finite direct product of Krull domains and special primary rings. Such a ring will be called a general Krull ring. It is known that Krull domains can be characterized by the star operations v or t as follows: An integral domain R is a Krull domain if and only if every nonzero proper principal ideal of R can be written as a finite v- or t-product of prime ideals. However, this is not true for general Krull rings. In this paper, we introduce a new star operation u on R, so that R is a general Krull ring if and only if every proper principal ideal of R can be written as a finite u-product of prime ideals. We also study several ring-theoretic properties of general Krull rings including Kaplansky-type theorem, Mori-Nagata theorem, Nagata rings, and Noetherian property.

ON v-MAROT MORI RINGS AND C-RINGS

  • Geroldinger, Alfred;Ramacher, Sebastian;Reinhart, Andreas
    • 대한수학회지
    • /
    • 제52권1호
    • /
    • pp.1-21
    • /
    • 2015
  • C-domains are defined via class semigroups, and every C-domain is a Mori domain with nonzero conductor whose complete integral closure is a Krull domain with finite class group. In order to extend the concept of C-domains to rings with zero divisors, we study v-Marot rings as generalizations of ordinary Marot rings and investigate their theory of regular divisorial ideals. Based on this we establish a generalization of a result well-known for integral domains. Let R be a v-Marot Mori ring, $\hat{R}$ its complete integral closure, and suppose that the conductor f = (R : $\hat{R}$) is regular. If the residue class ring R/f and the class group C($\hat{R}$) are both finite, then R is a C-ring. Moreover, we study both v-Marot rings and C-rings under various ring extensions.

ON 𝜙-PSEUDO-KRULL RINGS

  • El Khalfi, Abdelhaq;Kim, Hwankoo;Mahdou, Najib
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1095-1106
    • /
    • 2020
  • The purpose of this paper is to introduce a new class of rings that is closely related to the class of pseudo-Krull domains. Let 𝓗 = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}. Let R ∈ 𝓗 be a ring with total quotient ring T(R) and define 𝜙 : T(R) → RNil(R) by ${\phi}({\frac{a}{b}})={\frac{a}{b}}$ for any a ∈ R and any regular element b of R. Then 𝜙 is a ring homomorphism from T(R) into RNil(R) and 𝜙 restricted to R is also a ring homomorphism from R into RNil(R) given by ${\phi}(x)={\frac{x}{1}}$ for every x ∈ R. We say that R is a 𝜙-pseudo-Krull ring if 𝜙(R) = ∩ Ri, where each Ri is a nonnil-Noetherian 𝜙-pseudo valuation overring of 𝜙(R) and for every non-nilpotent element x ∈ R, 𝜙(x) is a unit in all but finitely many Ri. We show that the theories of 𝜙-pseudo Krull rings resemble those of pseudo-Krull domains.

ON GENERALIZED KRULL POWER SERIES RINGS

  • Le, Thi Ngoc Giau;Phan, Thanh Toan
    • 대한수학회보
    • /
    • 제55권4호
    • /
    • pp.1007-1012
    • /
    • 2018
  • Let R be an integral domain. We prove that the power series ring R[[X]] is a Krull domain if and only if R[[X]] is a generalized Krull domain and t-dim $R{\leq}1$, which improves a well-known result of Paran and Temkin. As a consequence we show that one of the following statements holds: (1) the concepts "Krull domain" and "generalized Krull domain" are the same in power series rings, (2) there exists a non-t-SFT domain R with t-dim R > 1 such that t-dim R[[X]] = 1.

BRAUER GROUP OVER A KRULL DOMAIN

  • Lee, Heisook
    • 대한수학회보
    • /
    • 제26권2호
    • /
    • pp.135-137
    • /
    • 1989
  • Let R be a Krull domain with field of fractions K. By Br(R) we denote the Brauer group of R. Studying the Kernel of the homomorphism Br(R).rarw.Br(K), Orzech defined Brauer groups Br(M) for different categories M of R-modules [4]. In this paper we show that an algebra A in Br(D) is a maximal order in A K and that the map Br(D).rarw. Br(K) is one to one. We note here few conventions. All rings are Krull domains and all modules will be unitary. By Z we donote the set of height one prime ideals of a Krull domain.

  • PDF

ω-MODULES OVER COMMUTATIVE RINGS

  • Yin, Huayu;Wang, Fanggui;Zhu, Xiaosheng;Chen, Youhua
    • 대한수학회지
    • /
    • 제48권1호
    • /
    • pp.207-222
    • /
    • 2011
  • Let R be a commutative ring and let M be a GV -torsionfree R-module. Then M is said to be a $\omega$-module if $Ext_R^1$(R/J, M) = 0 for any J $\in$ GV (R), and the w-envelope of M is defined by $M_{\omega}$ = {x $\in$ E(M) | Jx $\subseteq$ M for some J $\in$ GV (R)}. In this paper, $\omega$-modules over commutative rings are considered, and the theory of $\omega$-operations is developed for arbitrary commutative rings. As applications, we give some characterizations of $\omega$-Noetherian rings and Krull rings.

REGULARITY RELATIVE TO A HEREDITARY TORSION THEORY FOR MODULES OVER A COMMUTATIVE RING

  • Qiao, Lei;Zuo, Kai
    • 대한수학회지
    • /
    • 제59권4호
    • /
    • pp.821-841
    • /
    • 2022
  • In this paper, we introduce and study regular rings relative to the hereditary torsion theory w (a special case of a well-centered torsion theory over a commutative ring), called w-regular rings. We focus mainly on the w-regularity for w-coherent rings and w-Noetherian rings. In particular, it is shown that the w-coherent w-regular domains are exactly the Prüfer v-multiplication domains and that an integral domain is w-Noetherian and w-regular if and only if it is a Krull domain. We also prove the w-analogue of the global version of the Serre-Auslander-Buchsbaum Theorem. Among other things, we show that every w-Noetherian w-regular ring is the direct sum of a finite number of Krull domains. Finally, we obtain that the global weak w-projective dimension of a w-Noetherian ring is 0, 1, or ∞.

ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING

  • Moghimi, Hosein Fazaeli;Naghani, Sadegh Rahimi
    • 대한수학회지
    • /
    • 제53권6호
    • /
    • pp.1225-1236
    • /
    • 2016
  • Let R be a commutative ring with $1{\neq}0$ and n a positive integer. In this article, we introduce the n-Krull dimension of R, denoted $dim_n\;R$, which is the supremum of the lengths of chains of n-absorbing ideals of R. We study the n-Krull dimension in several classes of commutative rings. For example, the n-Krull dimension of an Artinian ring is finite for every positive integer n. In particular, if R is an Artinian ring with k maximal ideals and l(R) is the length of a composition series for R, then $dim_n\;R=l(R)-k$ for some positive integer n. It is proved that a Noetherian domain R is a Dedekind domain if and only if $dim_n\;R=n$ for every positive integer n if and only if $dim_2\;R=2$. It is shown that Krull's (Generalized) Principal Ideal Theorem does not hold in general when prime ideals are replaced by n-absorbing ideals for some n > 1.

LOCALLY COMPLETE INTERSECTION IDEALS IN COHEN-MACAULAY LOCAL RINGS

  • Kim, Mee-Kyoung
    • 대한수학회논문집
    • /
    • 제9권2호
    • /
    • pp.261-264
    • /
    • 1994
  • Throughout this paper, all rings are assumed to be commutative with identity. By a local ring (R, m), we mean a Noetherian ring R which has the unique maximal ideal m. By dim(R) we always mean the Krull dimension of R. Let I be an ideal in a ring R and t an indeterminate over R. Then the Rees algebra R[It] is defined to be(omitted)

  • PDF

NOETHERIAN RINGS OF KRULL DIMENSION 2

  • Shin, Yong-Su
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.1017-1023
    • /
    • 2010
  • We prove that a maximal ideal M of D[x] has two generators and is of the form where p is an irreducible element in a PID D having infinitely many nonassociate irreducible elements and q(x) is an irreducible non-constant polynomial in D[x]. Moreover, we find how minimal generators of maximal ideals of a polynomial ring D[x] over a DVR D consist of and how many generators those maximal ideals have.