References
- J. T. Arnold, Krull dimension in power series rings, Trans. Amer. Math. Soc. 177 (1973), 299-304. https://doi.org/10.1090/S0002-9947-1973-0316451-8
- G. W. Chang, B. G. Kang, and P. T. Toan, The Krull dimension of power series rings over almost Dedekind domains, J. Algebra 438 (2015), 170-187. https://doi.org/10.1016/j.jalgebra.2015.05.010
- G. W. Chang and D. Y. Oh, When D((X)) and D{{X}} are Prufer domains, J. Pure Appl. Algebra 216 (2012), no. 2, 276-279. https://doi.org/10.1016/j.jpaa.2011.06.009
- M. D. Fried and M. Jarden, Field Arithmetic, third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 11, Springer-Verlag, Berlin, 2008.
- R. Gilmer, Power series rings over a Krull domain, Pacific J. Math. 29 (1969), 543-549. https://doi.org/10.2140/pjm.1969.29.543
- R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
- M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19 (1967), 710-722. https://doi.org/10.4153/CJM-1967-065-8
-
B. G. Kang, Prufer v-multiplication domains and the ring
$R[X]_{N_v}$ , J. Algebra 123 (1989), no. 1, 151-170. https://doi.org/10.1016/0021-8693(89)90040-9 - B. G. Kang, K. A. Loper, T. G. Lucas, M. H. Park, and P. T. Toan, The Krull dimension of power series rings over non-SFT rings, J. Pure Appl. Algebra 217 (2013), no. 2, 254- 258. https://doi.org/10.1016/j.jpaa.2012.06.006
- B. G. Kang and M. H. Park, A localization of a power series ring over a valuation domain, J. Pure Appl. Algebra 140 (1999), no. 2, 107-124. https://doi.org/10.1016/S0022-4049(97)00211-9
- B. G. Kang and M. H. Park, A note on t-SFT-rings, Comm. Algebra 34 (2006), no. 9, 3153-3165. https://doi.org/10.1080/00927870600639476
- B. G. Kang and M. H. Park, Krull-dimension of the power series ring over a nondiscrete valuation domain is uncountable, J. Algebra 378 (2013), 12-21. https://doi.org/10.1016/j.jalgebra.2012.05.017
- K. A. Loper and T. G. Lucas, Constructing chains of primes in power series rings, J. Algebra 334 (2011), 175-194. https://doi.org/10.1016/j.jalgebra.2011.03.012
- K. A. Loper and T. G. Lucas, Constructing chains of primes in power series rings, II, J. Algebra Appl. 12 (2013), no. 1, 1250123, 30 pp.
- E. Paran, Split embedding problems over complete domains, Ann. of Math. (2) 170 (2009), no. 2, 899-914. https://doi.org/10.4007/annals.2009.170.899
- E. Paran and M. Temkin, Power series over generalized Krull domains, J. Algebra 323 (2010), no. 2, 546-550. https://doi.org/10.1016/j.jalgebra.2009.08.011
- F. Pop, Henselian implies large, Ann. of Math. (2) 172 (2010), no. 3, 2183-2195. https://doi.org/10.4007/annals.2010.172.2183
- R. Weissauer, Der Hilbertsche Irreduzibilitatssatz, J. Reine Angew. Math. 334 (1982), 203-220.