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ON GENERALIZED KRULL POWER SERIES RINGS

Le Thi Ngoc Giau and Phan Thanh Toan

Abstract. Let R be an integral domain. We prove that the power series

ring R[[X]] is a Krull domain if and only if R[[X]] is a generalized Krull

domain and t-dimR ≤ 1, which improves a well-known result of Paran and
Temkin. As a consequence we show that one of the following statements

holds: (1) the concepts “Krull domain” and “generalized Krull domain”
are the same in power series rings, (2) there exists a non-t-SFT domain

R with t-dimR > 1 such that t-dimR[[X]] = 1.

1. Introduction

For an integral domain R, an overring of R is a ring lying between R and its
quotient field. Let R be an integral domain. Consider the following properties
on a family {Rα}α∈Λ of valuation overrings of R.

(a) R = ∩α∈ΛRα.
(b) The family {Rα}α∈Λ has finite character, i.e., if 0 6= a ∈ R, then a is a

unit in all but finitely many Rα.
(c) Each Rα is essential for R, i.e., Rα is the localization of R at Mα ∩R,

where Mα is the maximal ideal of Rα.
(d) Each Rα is one-dimensional.
(d’) Each Rα is one-dimensional and discrete.

If there is a family {Rα}α∈Λ of valuation overrings of R satisfying (a), (b), (c),
and (d), then R is called a generalized Krull domain. If (d) is replaced by (d’)
in the preceding sentence, then we obtain the definition of a Krull domain R. It
is clear that a Krull domain is a generalized Krull domain. A one-dimensional
nondiscrete valuation domain is a simple example of a generalized Krull domain
that is not a Krull domain.

Let R be an integral domain and let R[[X]] be the power series ring over
R. Gilmer showed that if R is a Krull domain, then so is the power series
ring R[[X]] [5]. In fact, the converse also holds (see [3] or [6]). Hence, R is a
Krull domain if and only if R[[X]] is a Krull domain. The notion of generalized
Krull domain was introduced by Weissauer [18] and its importance is in field
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arithmetic and Galois theory (see, for example, [4, 15–17]). There was a long
standing open problem in commutative algebra and field arithmetic, namely,
is the power series ring R[[X]] a generalized Krull domain if R is [4, Problem
15.5.9(a)]? An answer to this question was given by Paran and Temkin in [16],
where they showed that R[[X]] is not necessarily a generalized Krull domain
if R is. In fact, they proved that R[[X]] is a Krull domain if and only if both
R and R[[X]] are generalized Krull domains [16]. Hence, if R is a generalized
Krull domain that is not a Krull domain, then R[[X]] is never a generalized
Krull domain.

In this paper, we show that R[[X]] is a Krull domain if and only if R[[X]]
is a generalized Krull domain and t-dimR ≤ 1 (the definition of t-dimR, the
t-dimension of R, is given in Section 2). Since every generalized Krull domain
has t-dimension at most one, our result improves Paran and Temkin’s result.
As a consequence we show that one of the following statements holds.

(1) The concepts “Krull domain” and “generalized Krull domain” are the
same in power series rings.

(2) There exists a non-t-SFT domain R with t-dimR > 1 such that
t-dimR[[X]] = 1.

Note that for any ring R, we always have dimR[[X]] ≥ dimR, where dimR
denotes the Krull dimension of R. If (2) is true, then we have t-dimR > t-
dimR[[X]], which shows a strange behavior of the t-dimension of the power
series ring R[[X]].

Arnold proved that if R is a non-SFT ring, then the Krull dimension of R[[X]]
is infinite [1] (see also [2,9,10,12–14]). In [11], Kang and Park conjectured that
a similar result holds for non-t-SFT domains, namely, if R is a non-t-SFT
domain, then t-dimR[[X]] = ∞. If Kang-Park’s conjecture is true, then (2)
never holds and hence the concepts “Krull domain” and “generalized Krull
domain” are the same in power series rings.

If R is a t-SFT domain, then t-dimR[[X]] ≥ t-dimR [11]. However, it is still
unknown whether this inequality holds in general. In other words, so far there
are no examples of an integral domain R such that t-dimR > t-dimR[[X]]. It
follows from our result that if the concepts “Krull domain” and “generalized
Krull domain” are different in power series rings, then one can obtain such an
example.

2. Results

We first give definition of an integral domain of Krull type and a Prüfer
v-multiplication domain (PvMD), and collect some well-known results related
to these kinds of integral domains that will be used later in the proof of our
main result.

Definition 1. Let R be an integral domain. If there is a family {Rα}α∈Λ of
valuation overrings of R satisfying (a), (b), and (c) in the introduction, then R
is said to be of Krull type.
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By definition, any generalized Krull domain is of Krull type. In other words,
the concept of integral domain of Krull type is weaker than that of generalized
Krull domain. However, it is still stronger than that of PvMD as shown below.

Let R be an integral domain with quotient field K. A fractional ideal I of
R is an R-submodule of K such that aI ⊆ R for some 0 6= a ∈ R. For each
nonzero fractional ideal I of R, let I−1 = {x ∈ K | xI ⊆ R}, Iv = (I−1)−1,
and

It = ∪{Jv | J is a nonzero finitely generated fractional subideal of I}.

An ideal I of R is called a v-ideal (respectively t-ideal) if Iv = I (respectively
It = I). I is a maximal t-ideal if it is maximal among proper t-ideals.

Definition 2. An integral domain R is called a PvMD if every nonzero finitely
generated ideal I of R is t-invertible, i.e., (II−1)t = R.

The following theorem of Griffin shows that every integral domain of Krull
type is a PvMD.

Theorem 3. ([7, Theorem 7]). The following are equivalent for an integral
domain R.

(1) R is an integral domain of Krull type.
(2) R is a PvMD and each nonzero element of R belongs to only finitely

many maximal t-ideals of R.

For an integral domain R, denote by t-Max(R) the set of maximal t-ideals
of R. It is well-known that each maximal t-ideal is a prime ideal, each proper
t-ideal is contained in a maximal t-ideal, and a prime ideal minimal over a
t-ideal is a prime t-ideal. In particular, any height one prime ideal is a t-ideal
(height of a prime ideal P is the supremum of the lengths of chains of prime
ideals between (0) and P ).

The following is well-known (see [7] or [8, Theorems 3.2 and 3.3]).

Theorem 4. Let R be an integral domain. Then R is a PvMD if and only if
RP is a valuation domain for each P ∈ t-Max(R). Hence, if R is a PvMD,
then R = ∩P∈t-Max(R)RP is an intersection of essential valuation domains.

For a prime t-ideal P of R, the t-height of P , denoted by t-htP , is the
supremum of the lengths of chains of prime t-ideals between (0) and P (we
include (0) as a prime t-ideal). The t-dimension of R is defined by t-dimR =
sup{t-htP | P is a prime t-ideal of R}.

Let R be an integral domain. If there is a family {Rα}α∈Λ of valuation
overrings of R satisfying (a) and (b), then R is said to be of finite character.
A family {Rα}α∈Λ satisfying (a) and (b) is called a defining family for R.

Theorem 5. Let R be an integral domain of Krull type. Then R is a general-
ized Krull domain if and only if t-dimR ≤ 1.
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Proof. The result trivially holds if R is a field. Hence, suppose that R is not
a field so that t-dimR > 0. By Theorems 3 and 4, R = ∩P∈t-Max(R)RP is
an intersection of valuation domains and each nonzero element of R belongs
to only finitely many maximal t-ideals P of R. Hence, {RP }P∈t-Max(R) is a
defining family for R. If R is a generalized Krull domain, then by [6, Corollary
43.9], {RPλ}λ∈Λ is the unique defining family for R, where {Pλ}λ∈Λ is the set
of height one prime ideals of R. It follows that t-Max(R) = {Pλ}λ∈Λ and hence
t-dimR = 1. Conversely, if t-dimR = 1, then RP is one-dimensional for each
maximal t-ideal P of R, which implies that R is a generalized Krull domain. �

We now state and prove the main result of this paper.

Theorem 6. The following are equivalent for an integral domain R.

(1) R is a Krull domain.
(2) R[[X]] is a Krull domain.
(3) R[[X]] is a generalized Krull domain and t-dimR ≤ 1.

Proof. The theorem trivially holds if R is a field. Hence, we assume that R
is not a field so that t-dimR > 0. We only need to prove that (3) implies
(2). Suppose that R[[X]] is a generalized Krull domain and t-dimR = 1. Let
{Qα}α∈Λ be the set of maximal t-ideals of R[[X]]. By Theorems 3 and 4,

R[[X]] =
⋂
α∈Λ

R[[X]]Qα

is an intersection of valuation domains and the family {R[[X]]Qα}α∈Λ has finite
character. By Theorem 5, {Qα}α∈Λ is the set of height one prime ideals of
R[[X]]. Hence, each R[[X]]Qα is one-dimensional. For each α, if we let

Vα = R[[X]]Qα ∩K,
where K is the quotient field of R, then Vα is a valuation overring of R with
Krull dimension at most one (see [6, Theorem 19.16]). We have

R = R[[X]] ∩K = (
⋂
α∈Λ

R[[X]]Qα) ∩K =
⋂
α∈Λ

(R[[X]]Qα ∩K) =
⋂
α∈Λ

Vα.

Since the family {R[[X]]Qα}α∈Λ has finite character, so is {Vα}α∈Λ. Let P be
a maximal t-ideal of R. Since t-dimR = 1, P is a minimal prime ideal of R.
By [6, Theorem 43.7], RP is a valuation domain and RP = Vα for some α ∈ Λ.
Hence, R is a PvMD by Theorem 4. Since {Vα}α∈Λ has finite character, each
nonzero element of R belongs to only finitely many maximal t-ideals P of R.
Theorem 3 shows that R is an integral domain of Krull type. By Theorem 5,
R is a generalized Krull domain. Since both R and R[[X]] are generalized Krull
domain, R[[X]] is a Krull domain by [16, Theorem 1.1]. �

Definition 7. An ideal I of a ring R is called an SFT ideal if there exist a
finitely generated ideal J of R with J ⊆ I and a positive integer k such that
ak ∈ J for each a ∈ I. A ring R is called an SFT ring if every ideal I of R is
an SFT ideal.
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The definition of SFT ring was given by Arnold in [1], where he showed that
if a ring R is a non-SFT ring, then the Krull dimension of the power series ring
R[[X]] is infinite. In fact, dimR[[X]] is uncountably infinite if R is a non-SFT
ring [9] (see also [2, 12–14]).

In [11] Kang and Park defined the following concept of t-SFT ideal, which
is a t-analogue version of SFT ideal.

Definition 8. A nonzero ideal I of an integral domain R is called a t-SFT
ideal if there exist a finitely generated ideal J of R with J ⊆ I and a positive
integer k such that ak ∈ Jv for each a ∈ It. An integral domain R is called a
t-SFT domain if every nonzero ideal I of R is a t-SFT ideal.

Remark 9. Note that every SFT domain is a t-SFT domain and the concepts
“SFT domain” and “t-SFT domain” are the same in valuation domains, more
generally, in Prüfer domains [11].

Theorem 6 implies the following.

Corollary 10. One of the following statements holds.

(1) The concepts “Krull domain” and “generalized Krull domain” are the
same in power series rings.

(2) There exists a non-t-SFT domain R with t-dimR > 1 such that
t-dimR[[X]] = 1.

Proof. Suppose that (1) does not hold. Then there exists an integral domain
R such that R[[X]] is a generalized Krull domain but not a Krull domain. By
Theorem 6, t-dimR > 1. Since R[[X]] is a generalized Krull domain that is not
a field, t-dimR[[X]] = 1 (Theorem 5). As in the proof of Theorem 6, R = ∩αVα
is an intersection of valuation overrings of R of Krull dimension at most one.
Hence, R is completely integrally closed. If R is a t-SFT domain, then it is
a Krull domain by [11, Theorem 2.9] and hence R[[X]] is a Krull domain, a
contradiction. Therefore, R is a non-t-SFT domain. �

Remark 11. In [11], Kang and Park conjectured that if R is a non-t-SFT
domain, then t-dimR[[X]] = ∞. If Kang-Park’s conjecture is true, then (2)
never holds and hence the concepts “Krull domain” and “generalized Krull
domain” are the same in power series rings.

Remark 12. For an integral domain R, if P is a prime ideal of R, then P [[X]]
is a prime ideal of R[[X]]. Hence, we always have dimR[[X]] ≥ dimR. For a
t-SFT domain R, we also have t-dimR[[X]] ≥ t-dimR [11]. However, it is still
unknown whether this inequality holds in general. In other words, so far there
are no examples of an integral domain R such that t-dimR > t-dimR[[X]].
According to Corollary 10, if the concepts “Krull domain” and “generalized
Krull domain” are different in power series rings, then one can obtain such an
example.

We end the paper with the following question.
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Question 13. In Corollary 10, which of the statements, (1) or (2), holds?
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