• Title/Summary/Keyword: Junction

Search Result 3,315, Processing Time 0.028 seconds

The Improvement of Junction Box Within Photovoltaic Power System

  • Sun, Ki-Ju;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.359-362
    • /
    • 2016
  • In the PV (Photovoltaic) power system, a junction box collects the DC voltage generated from the PV module and transfers it to the PCS (power conditioning system). The junction box prevents damage caused by the voltage difference between the serially connected PV modules and provides convenience while repairing or inspecting the PV array. In addition, the junction box uses the diode to protect modules from the inverse current when the PV power system and electric power system are connected for use. However, by using the reverse blocking diode, heat is generated within the junction box while generating electric power, which decreases the generating efficiency, and causes short circuit and electric leakage. In this research, based on the purpose of improving the performance of the PV module by decreasing the heat generation within the junction box, a junction box with a built-in bypass circuit was designed/manufactured so that a certain capacity of current generated from the PV module does not run through the reverse blocking diode. The manufactured junction box was used to compare the electric power and heating power generated when the circuit was in the bypass/non-bypass modes. It was confirmed that the electric power loss and heat generation indicated a decrease when the circuit was in the bypass mode.

Characteristics of NMOS Transistors with Phosphorus Source/Drain Formed by Rapid Thermal Diffusion (고속 열확산 공정에 의해 형성된 Phosphorus Source/Drain을 갖는 NMOS 트랜지스터의 특성)

  • 조병진;김정규;김충기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1409-1418
    • /
    • 1990
  • Characteristics of NMOS transistors with phosphorus source/drain junctions formed by two-step rapid thermal diffusion (RTD) process using a solid diffusion source have been investigated. Phosphorus profiles after RTD were measured by SIMS analysis. In the case of 1100\ulcorner, 10sec RTD of, P, the specific contact resistance of n+ Si-Al was 2.4x10**-7 \ulcorner-cm\ulcorner which is 1/5 of the As junction The comparison fo P junction devices formed by RTD and conventional As junction devices shows that both short channel effect and hot carrier effect of P junction devices are smaller than those of As junction devices when the devices have same junction depths. P junction device had maximum of 0.4 times lower Isub/Id than As junction device. Characteristics of P junction formed by several different RTD conditions have been compared and 1000\ulcorner RTD sample had the smaller hot carrier generation. Also, it has been shown that the hot carrier generation can be futher reduced by forming the P junctions by 3-step RTD which has RTO-driven-in process additionally.

  • PDF

H-Plane 8-Way Rectangular Waveguide Power Divider Using Y-Junction (Y-Junction을 이용한 H-평면 8-Way 구형 도파관 전력 분배기)

  • Lee, Sang-Heun;Yoon, Ji-Hwan;Yoon, Young-Joong;Kim, Jun-Yeon;Lee, Woo-Sang;Park, Seul-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.151-158
    • /
    • 2012
  • This paper proposes a H-plane 8-way rectangular waveguide power divider using Y-junction. A general N-way power divider can be composed of multi-stage T-junctions. However, if the distances of output ports are close, the matching characteristic is not improved by using only T-junctions because of space limitation. In this case, since other types of 3-port junctions should be used to final output stage, Y-junctions are used with T-junctions in this paper. The proposed Y-junction uses the tapered-line impedance transformer and inductive irises to improve impedance matching characteristic. The 8-way power divider using Y-junction is fabricated and measured. The measured return loss and insertion loss from input port to output port are -30.8 dB and -9.3 dB at operating frequency, respectively. The measured maximum phase difference is about $1^{\circ}$. Therefore, the proposed power divider will be useful to apply to various microwave systems, which need to divide the input power equally, such as feed networks for array antennas.

Effect of Ginseng Saponin on Gap Junction Channel Reconstituted with Connexin 32

  • Hong, Eun-Jung;Huh, Keun;Rhee, Seung-Keun
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.264-268
    • /
    • 1996
  • Panax-ginseng saponin has been known to exert various pharmacological effects on cellular metabolism. This study was performed to determine the effect of ginseng saponin on gap junction channel-mediated intercellular communication, using an established in vitro system of reconstituted gap junction channels. Gap junction channels are a specialized plasma membrane fraction, which are permeable to relatively large water-soluble molecules. The sucrose permeable property of reconstituted gap junction channels was completely inhibited with 0.1 % (w/v) of ginseng saponin. We also compared the effect of ginseng saponin with that of Triton X-100, a nonionic detergent, on the same system. Triton X-100 showed significantly different effect on sucrose-permeability of gap junction channel from that was affected by ginseng saponin. The structures of liposomes containing gap junction channels was significantly destroyed by Triton X-100.

  • PDF

Thin Film Si-Ge/c-Si Tandem Junction Solar Cells with Optimum Upper Sub- Cell Structure

  • Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.94-101
    • /
    • 2020
  • This study was trying to focus on achieving high efficiency of multi junction solar cell with thin film silicon solar cells. The proposed thin film Si-Ge/c-Si tandem junction solar cell concept with a combination of low-cost thin-film silicon solar cell technology and high-efficiency c-Si cells in a monolithically stacked configuration. The tandem junction solar cells using amorphous silicon germanium (a-SiGe:H) as an absorption layer of upper sub-cell were simulated through ASA (Advanced Semiconductor Analysis) simulator for acquiring the optimum structure. Graded Ge composition - effect of Eg profiling and inserted buffer layer between absorption layer and doped layer showed the improved current density (Jsc) and conversion efficiency (η). 13.11% conversion efficiency of the tandem junction solar cell was observed, which is a result of showing the possibility of thin film Si-Ge/c-Si tandem junction solar cell.

Two-Phase Flow through a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.1
    • /
    • pp.28-39
    • /
    • 2006
  • Two-phase flow through a T-junction has been studied by numerous researchers so far. The dividing characteristics of the gas and liquid phases at the T-junction are very complicated due to a lot of related variables. The prediction models have been suggested by using experimental data for a specific condition or working fluid. But, they showed the application limitation for the most of the other conditions or fluids. Since most of them are applicable for their own experimental range, the generalized model for the wide range of conditions and fluids is needed. Even though it's not available now, some of the models developed for air-water flow at a T-junction might be applicable for the part of refrigerants with some modifications. Especially, for the two-phase flow of refrigerants at the T-junction, very few studies have been performed. Further experimental study is required to be performed for the wide range of test conditions and fluids to predict properly the two-phase flow distribution and phase separation through the T-junction.

A New Junction Termination Structure by Employing Trench and FLR (Trench와 FLR을 이용한 새로운 접합 마감 구조)

  • 하민우;오재근;최연익;한민구
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.6
    • /
    • pp.257-260
    • /
    • 2003
  • We have proposed the junction termination structure of IGBT (Insulated Gate Bipolar Transistor) by employing trench and FLR (Field Limiting Ring), which decrease the junction termination area at the same breakdown voltage. Our proposed junction termination structure, trench FLR is verified by numerical simulator MEDICI. In 600V rated device, the junction termination area is decreased 20% compared with that of the conventional FLR structure. The breakdown voltage of trench FLR with 4 trenches is 768 V, 99 % of ideal parallel-plane junction(1-D) $BV_ceo$.

Ghost Junction Method for Flow Network System Analyses (유동망 시스템 해석을 위한 유령 정션 기법)

  • Hong, Seok-Woo;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.626-629
    • /
    • 2008
  • Numerical predictions on flow phenomena in pipe network systems have been considered as playing an important role in both designing and operating various facilities of piping or duct systems, such as water supply, tunnel or mine ventilation, hydraulic systems of automobile or aircraft, and etc. Traditionally, coupling conditions between junction and connected branches are assumed to satisfy conservation law of mass and to share an equal pressure at junction node. However, the conventional methodology cannot reflect momentum interactions between pipes sufficiently. Thus, a new finite volume junction treatment is proposed both to reflect the interchanges of linear momentums between neighbor branches at junction and to include the effect of wall at junction in present work.

  • PDF

The Junction Termination Design Employing Shallow Trench and Field Limiting Ring for 1200 V-Class Devices (얕은 트렌치와 전계 제한 확산 링을 이용한 접합 마감 설계의 1200 V급 소자에 적용)

  • 하민우;오재근;최연익;한민구
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.300-304
    • /
    • 2004
  • We have proposed the junction termination design employing shallow trench filled with silicon dioxide and field limiting ring (FLR). We have designed trenches between P+ FLRs to decrease the junction termination radius without sacrificing the breakdown voltage characteristics. We have successfully fabricated and measured improved breakdown voltage characteristics of the Proposed device for 1200 V-class applications. The junction termination radius of the proposed device has decreased by 15%-21% compared with that of the conventional FLR at the identical breakdown voltage. The junction termination area of the proposed device has decreased by 37.5% compared with that of the conventional FLR. The breakdown voltage of the proposed device employing 7 trenches was 1156 V, which was 80% of the ideal parallel-plane .junction breakdown voltage.

Analysis of the Junction Temperature in the LED Chips using the Finite Element Method (유한요소법을 이용한 LED 칩의 접합부 온도 해석)

  • Han, Ji-Won;Park, Joo-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.26-30
    • /
    • 2012
  • It is difficult to determine the junction temperature because LED lightings are manufactured using several chips with low power. This paper reports on the finite element method of the determination of junction temperature in the GaN-based LEDs. The calculated junction temperature of the LED chip using FEM was compared with the experimentally measured data. As the results of this study, the junction temperature of LED chips with via holes is lower than that of LED chips without via hole. Therefore, the research of via hole is necessary to decrease junction temperature of LED chips.