DOI QR코드

DOI QR Code

Thin Film Si-Ge/c-Si Tandem Junction Solar Cells with Optimum Upper Sub- Cell Structure

  • Park, Jinjoo (Major of Energy and Applied Chemistry, Division of Energy & Optical Technology Convergence, Cheongju University)
  • Received : 2020.09.09
  • Accepted : 2020.09.14
  • Published : 2020.09.30

Abstract

This study was trying to focus on achieving high efficiency of multi junction solar cell with thin film silicon solar cells. The proposed thin film Si-Ge/c-Si tandem junction solar cell concept with a combination of low-cost thin-film silicon solar cell technology and high-efficiency c-Si cells in a monolithically stacked configuration. The tandem junction solar cells using amorphous silicon germanium (a-SiGe:H) as an absorption layer of upper sub-cell were simulated through ASA (Advanced Semiconductor Analysis) simulator for acquiring the optimum structure. Graded Ge composition - effect of Eg profiling and inserted buffer layer between absorption layer and doped layer showed the improved current density (Jsc) and conversion efficiency (η). 13.11% conversion efficiency of the tandem junction solar cell was observed, which is a result of showing the possibility of thin film Si-Ge/c-Si tandem junction solar cell.

Keywords

References

  1. Loper, P., Niesen, B., Moon, S.J., De Nicolas, S.M., Holovsky, J., Remes, Z., Ledinsky, M., Haug, F.J., Yum, J.H., De Wolf, S., Ballif, C., “Organic–inorganic halide perovskites: Perspectives for silicon-based tandem solar cells,” IEEE J. Photovoltaics, Vol. 4, No. 6, pp. 1545-1551, 2014. https://doi.org/10.1109/JPHOTOV.2014.2355421
  2. Sameshima, T., Takenezawa, J., Hasumi, M., Koida, T., Kaneko, T., Karasawa, M., Kondo, M., "Multi junction solar cells stacked with transparent and conductive adhesive," Jpn. J. Appl. Phys., Vol. 50, No. 5R, 052301, 2011. https://doi.org/10.1143/JJAP.50.052301
  3. Janz, S., Schnabel, M., LOper, P., Summonte, C., Canino, M., LOpez-Vidrier, J., Hernandez, S., Garrido, B., Glunz, W.W., "Processing and characterisation of tandem solar cells from crystalline silicon materials," 28th European PV Solar Energy Conference and Exhibition, Paris, France, 2013.
  4. Umeno, M., Soga, T., Baskar, K., Jimbo, T., “Hetero epitaxial technologies on Si for high-efficiency solar cells,” Sol. Energy Mater. Sol. Cells, Vol. 50, No. 1-4, pp. 203-212, 1998. https://doi.org/10.1016/S0927-0248(96)00149-3
  5. Tanabe, K., Watanabe, K., Arakawa, Y., "III-V/Si hybrid photonic devices by direct fusion bonding," Nat. Sci. Rep., Vol. 2, 349, 2012. https://doi.org/10.1038/srep00349
  6. Beiley, Z.M., McGehee, M.D., "Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%," Energy Environ. Sci., Vol. 5, pp. 9173-9179, 2012. https://doi.org/10.1039/c2ee23073a
  7. Bailie, C.D., Christoforo, M.G., Mailoa, J.P., Bowring, A.R., Unger, E.L., Nguyen, W.H., Burschka, J., Pellet, N., Lee, J.Z., Grätzel, M., Noufi, R., Buonassisi, T., Salleo, A., McGehee, M.D., "Semi-transparent perovskite solar cells for tandems with silicon and CIGS," Energy Environ. Sci., Vol. 8, pp. 956-963, 2015. https://doi.org/10.1039/C4EE03322A
  8. Blocker, W., "High-efficiency solar energy conversion through flux concentration and spectrum splitting," Proc. IEEE, Vol. 66 pp. 104-105, 1978. https://doi.org/10.1109/PROC.1978.10852
  9. Kim, S., Kasashima, S., Sichanugrist, P., Kobayashi, T., Nakada, T., Konagai, M., "Development of thin-film solar cells using solar spectrum splitting technique," Sol. Energy Mater. Sol. Cells, Vol. 119, pp. 214-218, 2013. https://doi.org/10.1016/j.solmat.2013.07.011
  10. Wang, X., Waite, N., Murcia, P., Emery, K., Steiner, M., Kiamilev, F., Goossen, K., Honsberg, C., Barnett, A., "Lateral spectrum splitting concentrator photovoltaics: direct measurement of component and submodule efficiency," Prog. Photovoltaics Res. Appl., Vol. 20, pp. 149-165, 2012. https://doi.org/10.1002/pip.1194
  11. Yan, J., Thomas, F., Romain, C., Galo, T. S., Thierry, M., Stefano, P., Rolf, E., Marta, D.R., Mario, O., Ramis, H., Ayodhya, N.T., and Fan, F., "High-mobility $In_2O_3$:H electrodes for four-terminal perovskite/$CuInSe_2$ tandem solar cells," ACS Nano, Vol. 14, No. 6, pp. 7502-7512, 2020. https://doi.org/10.1021/acsnano.0c03265
  12. Lundszien, D., Finger, F., and Wagner, H., "A-Si:H buffer in a-SiGe:H solar cells," Solar Energy Materials & Solar Cells, Vol. 74, pp. 365-372, 2002. https://doi.org/10.1016/S0927-0248(02)00096-X
  13. Park, J., Kim, S., Phong, P. D., Lee, S., Yi, J., “Improved carrier tunneling and recombination in tandem solar cell with p-type nanocrystalline Si intermediate layer,” Current Photovoltaic Research, Vol. 8, No. 1, pp. 6-11, 2020. https://doi.org/10.21218/CPR.2020.8.1.006
  14. Lundszien, D., Finger, F., Wagner, H., "Band-gap profiling in amorphous silicon-germanium solar cells," Appl. Phys. Lett., Vol. 80, 1655, 2002. https://doi.org/10.1063/1.1456548
  15. Arya, R.R., Catalano, A., Oswald, R.S., "Amorphous silicon p ‐i‐n solar cells with graded interface," Appl. Phys. Lett., Vol. 49, 1089, 1986. https://doi.org/10.1063/1.97430
  16. Zimmer, J., Stiebig, H., Wagner, H., "a-SiGe:H based solar cells with graded absorption layer," J. Appl. Phys., Vol. 84, 611, 1998. https://doi.org/10.1063/1.368088
  17. Fan, Q. H., Chen, C., Liao, X., Xiang, X., Zhang, S., Ingler, W., Adiga, N., Hub, Z., Cao, X., Du, W., Deng, X., "High efficiency silicon-germanium thin film solar cells using graded absorber layer," Sol. Energy Mater. Sol. Cells, Vol. 94, 1300, 2010. https://doi.org/10.1016/j.solmat.2010.03.006