
 
 

 

1. Introduction 
 
 In the event of dealing with flow networks numerically, a junction 

treatment is a prerequisite technique to arrive at theoretical solutions of 
the flow fields. Traditionally, over a few decades, coupling conditions 
based on mass conservation law at junction-node have been applied to 
give boundary conditions for connected pipe flow analyses(see[1-4]).   
A node-based approach like this is proved to be well-posed 

mathematically(see[5]) and convenient to implement because it 
requires no additional information beside the following two conditions, 
which are sharing a pressure and satisfying mass conservation law at 
the singular junction node. However, conventional method cannot 
account for momentum interactions without incorporating loss 
coefficients, since the node-based treatment does not consider 
momentum balances at junction, i.e. the interchange of momentums 
among neighbor branches and the crucial effect of the reaction force at 
wall-region of junction are exclusive. Of course, the loss coefficients 
are sometimes available from experimental database and could be 
specified dynamically according to geometry and flow conditions. 
Despite the coefficients for a large amount of junction-branch 
configurations can be found in the famous reference [6], these 
coefficients are almost inaccessible when connected branches are equal 
or more than four. Moreover, the minor losses due to geometry and 
three dimensional flow physics are likely to become non-negligible 
especially for short pipe systems while they are negligible in many 
cases of long pipe systems.   
Consequently, GJM can be an alternative method in case that the loss 

coefficients along streamlines between neighbor branches are available 
from neither experimental databases nor theoretical analyses. 

2. Ghost Junction Method 
 
2.1 Methodology 
A structured FVM of one-dimensional governing equations is applied 

for each pipe and three-dimensional unstructured form is for junction.  
An integral form of Euler equations is expressed by (1) and an 

additional equation of state is required for compressible flow analyses, 
where Q is vector of conservative variables, F is flux vector and ࣢ is 
source vector per unit volume. 
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Herein, a ghost junction cell is surrounded by interfaces with neighbor 

branches and wall surfaces (i.e. of course, the other type of surfaces, 
such as windows, could be existent) and the numerical flux at interfaces 
should be calculated in three-dimensional space for junction volume.  
And then, the flux can be reused as boundary flux when calculating 

one-dimensional pipe flows so that GJM should obey the following 
three conditions to satisfy consistencies of flux at interfaces. 
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For ghost junction  
Assuming all source vectors are zero for a ghost junction cell, a 

semi-discretized form of governing equations can be expressed as 
follows, where ܳ is vector of conservative variables, ܨ is flux vector, 
ܷ is outgoing velocity normal to surfaces and ܰ is unit vector normal 
to surfaces. 
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3.2 Test Results 
 
(1)Counter combining at low Mach ( ܣ௥ ൌ ஺భ

஺య
ൌ 1, ܳ௥ ൌ ௠ሶ భ

௠ሶ య 
)

 
Fig.3 ܭଵଷ - Counter combinig ( ܣ௥ ൌ 1, ߠ ൌ 90௢ ) 

  

(2)Counter combining at high Mach ( ܣ௥ ൌ ஺భ
஺య

ൌ 1, ܳ௥ ൌ ௠ሶ భ
௠ሶ య 

) 

  
Fig.4 ܭଵଷ - Counter combinig ( ܳ௥ ൌ 0.5) 

 

 
Fig.5 ܭଵଷ- Counter combinig ( ܳ௥ ൌ 0.25) 

 
 
(3)Counter dividing at low Mach ( ܣ௥ ൌ ஺భ

஺య
ൌ 1, ܳ௥ ൌ ௠ሶ భ

௠ሶ య 
) 

 
Fig.6 ܭଷଵ- Counter dividinig ( ܣ௥ ൌ 1, ߠ ൌ 90௢ ) 

 

(4)Counter dividing at high Mach ( ܣ௥ ൌ ஺భ
஺య

ൌ 1, ܳ௥ ൌ ௠ሶ భ
௠ሶ య 

) 

 
Fig.7 ܭଷଵ- Counter dividing ( ܳ௥ ൌ 0.5) 

 

 
Fig.8 ܭଷଵ- Counter dividing ( ܳ௥ ൌ 0.25) 
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(4)Straight combining ( ܣ௥ ൌ ஺మ
஺య

ൌ 1, ܳ௥ ൌ ௠ሶ య
௠ሶ మ 

) 

 
Fig.9 ܭଵଶ-Straight combinig ( ܣ௥ ൌ 1, ߠ ൌ 90௢ ) 

 

 
Fig.10 ܭଵଶ- Straight combinig (ܣ௥ ൌ 1, ߠ ൌ 45௢) 

 
(5)Branch combining ( ܣ௥ ൌ ஺మ

஺య
ൌ 1, ܳ௥ ൌ ௠ሶ య

௠ሶ మ 
) 

 
Fig.11 ܭଷଶ- Branch combinig ( ܣ௥ ൌ 1, ߠ ൌ 90௢ ) 

 
Fig.12 ܭଷଶ- Branch combinig (ܣ௥ ൌ 1, ߠ ൌ 45௢) 

 
4. Discussion and Conclusions 
 
A new finite volume junction treatment GJM is proposed and tested 

numerically at T-type junction configurations. The GJM shows a good 
agreement with theoretical linear momentum analyses. Moreover, in 
the case of high Mach flows as shown in Fig.4~5, it predicted loss 
coefficients to be intermediate value between experimental coefficients 
and theoretical one. Consequently, GJM is expected to be an alternative 
method which can predict minor losses at junction without empirical 
correlations because it is designed to generally reflect linear momentum 
interactions for arbitrary junction-branch configurations. Additionally, 
non-iterative GJM is also expected to have an advantage of fast 
computations over the conventional iterative methods. 
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