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Abstract

Numerical predictions on flow phenomena in pipe network systems have been considered as playing an important role in both
designing and operating various facilities of piping or duct systems, such as water supply, tunnel or mine ventilation, hydraulic systems
of automobile or aircraft, and etc. Traditionally, coupling conditions between junction and connected branches are assumed to satisfy
conservation law of mass and to share an equal pressure at junction node. However, the conventional methodology cannot reflect
momentum interactions between pipes sufficiently. Thus, a new finite volume junction treatment is proposed both to reflect the
interchanges of linear momentums between neighbor branches at junction and to include the effect of wall at junction in present work.

1. Introduction

In the event of dealing with flow networks numerically, a junction
treatment is a prerequisite technique to arrive at theoretical solutions of
the flow fields. Traditionally, over a few decades, coupling conditions
based on mass conservation law at junction-node have been applied to
give boundary conditions for connected pipe flow analyses(see[1-4]).

A node-based approach like this is proved to be well-posed
mathematically(see[5]) and convenient to implement because it
requires no additional information beside the following two conditions,
which are sharing a pressure and satisfying mass conservation law at
the singular junction node. However, conventional method cannot
account for momentum interactions without incorporating loss
coefficients, since the node-based treatment does not consider
momentum balances at junction, i.e. the interchange of momentums
among neighbor branches and the crucial effect of the reaction force at
wall-region of junction are exclusive. Of course, the loss coefficients
are sometimes available from experimental database and could be
specified dynamically according to geometry and flow conditions.
Despite the coefficients for a large amount of junction-branch
configurations can be found in the famous reference [6], these
coefficients are almost inaccessible when connected branches are equal
or more than four. Moreover, the minor losses due to geometry and
three dimensional flow physics are likely to become non-negligible
especially for short pipe systems while they are negligible in many
cases of long pipe systems.

Consequently, GIM can be an alternative method in case that the loss
coefficients along streamlines between neighbor branches are available
from neither experimental databases nor theoretical analyses.
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2. Ghost Junction Method

2.1 Methodology
A structured FVM of one-dimensional governing equations is applied
for each pipe and three-dimensional unstructured form is for junction.
An integral form of Euler equations is expressed by (1) and an
additional equation of state is required for compressible flow analyses,
where Q is vector of conservative variables, F is flux vector and H is
source vector per unit volume.

Fds = HddV
v(t)

1
dt v(t)

QdV+§
s(t)

Herein, a ghost junction cell is surrounded by interfaces with neighbor
branches and wall surfaces (i.e. of course, the other type of surfaces,
such as windows, could be existent) and the numerical flux at interfaces
should be calculated in three-dimensional space for junction volume.

And then, the flux can be reused as boundary flux when calculating
one-dimensional pipe flows so that GIM should obey the following
three conditions to satisfy consistencies of flux at interfaces.

t t
Wy = Fy B = B o By = mbl b my B B @)

For ghost junction

Assuming all source vectors are zero for a ghost junction cell, a

semi-discretized form of governing equations can be expressed as
follows, where Q is vector of conservative variables, F is flux vector,
U is outgoing velocity normal to surfaces and N is unit vector normal
to surfaces.

n+1 n

il AV(t)

Q—F— ©)

ZF (©) -

where
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Supposing a representative surface for this region of wall, numerical
flux on the representative wall can be obtained from a simple
mathematical manipulation. The integrant of unit normal vector N over
surfaces of the imaginary control volume vanishes mathematically.

f Nds =0 4
N
The effect of walls can be simplified by use of a representative wall
and the resultant is expressed in (5), where pseudo-walls include all
surfaces except real-walls, N and s represent connected angle and
section area respectively.
n n
PNgsg = Z pNis; = — ZPNiSi
i=1
pseudo wall

©®)

i=m+1
real wall

Herein, the volume-size and shape of ghost junction cell are still
ambiguous. In addition to a quasi-steady assumption, a ghost junction
cell is supposed to have imaginary dimensions rather than real ones (i.e.
this is the reason we call it a “ghost”). With these assumptions, neither
size nor the exact shape of the control volume gives meaningful impact
on the numerical flow field in junction.

For a pipe
A semi-discretized form of Euler equations for j** cell in a pipe can
be written as (6), where p is density, U is velocity, p is pressure, e; is
total energy, g is gravity acceleration, Z is relative height from reference
position, V is a volume of j** cell, R is a residual vector, H,, isamain
source vector, Dy, S, are the auxiliary source vectors and s is a

cross-section of pipe.
Qn+1 _ Qn (

V—m—=

- —s le_%) +Hy=-RQ) (6)

Jty Jty i3

p pU )
where Q=<pU>, F=| pU*+p |, et=e+EU2+gZ
pet (pes + U

The main source vector H, is associated with pressure force due to
different cross sections, wall friction and gravity force, where Dy is
hydraulic diameter, Pr is perimeter of the cross-section, g, is X
component of gravity acceleration vector, 7, s is steady part of wall
shear stresses, T, ;; is unsteady part of wall shear stresses, C; is skin

friction, U is instantaneous acceleration, m is mass of fluid in j** cell
and Ax is grid-size.

0
Hy = | (tw,s + Twu) Prax +p(sj1/2 = Sj-1/2) + mgsx ] ™
0

where 7,5 = Crs spUIUL Ty = Cry 7pDxU

The proposed GJM is expected to reflect the effect of a linear
momentum interaction for arbitrary combinations of junction and
branches. Additionally, non-iterative GJM is also expected to consume
less computing times than the conventional iterative methods. However,
take notice that GJIM may not be able to represent non-linear effects by
itself and the only way to account for the nonlinearities is considered as
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to incorporate loss coefficients.

Finally, to overcome difficulties from heterogeneity of spatial
dimension between junction(3D) and branches(1D), numerical
analyses are conducted using Roe’s FDS and then a scaling function is
designed to control the problematic source produced at interfaces
between junction and branches. The abrupt change of pressure at
interfaces due to this source is generally expressed as (8).

1 M+ M| AU
net+n,+n,\ 1+ M t

Ap = —paldU, — pa )

2.2 Scaling function

From analogy to change of linear momentum and large amount of
numerical tests, a non-dimensional scaling function is designed as (8).
In subsonic region, the function has a positive value of magnitude from
zero to one.

|AU, |
G=—7>, 0<G<1 9)
Replacing AU,, with GAU,,, equation (8) can be written as.
Ap + p|AUL|AU, = ! M+ M AU, 10
P P8I = panx+ny+nz 1+M e (10)

See the left hand side of (10) is analogous to change of linear
momentum in agreement with our goal and this implies that linear
momentum interaction is strongly affected by AU, and pipe- direction
vector (ny,n,,n,). Moreover, the relation (10) justifies that the
condition C3 in (2) should be applied to generally account for the effect
of branch angle.

Herein, the scaling process can be implemented through a projection
method and among all primitive variables in the ghost junction cell,
only the velocity components should be projected by (11), where the
interface, the left cell and the right cell of the interface are denoted by

the subscript j+1/2, j and j+1 respectively.
(11)

L — g n n t
{uj+1/2—uj+1 GAu™ +

R _
U1z = Uit

3. Numerical Tests

General features of GJM are investigated numerically. Test
configurations and the results are shown in Fig.1~2 and in Fig.3~12.

Theoretical and experimental energy loss coefficients are referred in
[6-8]. Also, the empirical correlations are referred in [8].

3.1 Test Configurations
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3.2 Test Results
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4. Discussion and Conclusions

A new finite volume junction treatment GIM is proposed and tested
numerically at T-type junction configurations. The GJM shows a good
agreement with theoretical linear momentum analyses. Moreover, in
the case of high Mach flows as shown in Fig.4~5, it predicted loss
coefficients to be intermediate value between experimental coefficients
and theoretical one. Consequently, GIM is expected to be an alternative
method which can predict minor losses at junction without empirical
correlations because it is designed to generally reflect linear momentum
interactions for arbitrary junction-branch configurations. Additionally,
non-iterative GJM is also expected to have an advantage of fast
computations over the conventional iterative methods.
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