• Title/Summary/Keyword: Ishikawa iteration

Search Result 44, Processing Time 0.025 seconds

ON THE ON THE CONVERGENCE BETWEEN THE MANN ITERATION AND ISHIKAWA ITERATION FOR THE GENERALIZED LIPSCHITZIAN AND Φ-STRONGLY PSEUDOCONTRACTIVE MAPPINGS

  • Xue, Zhiqun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.635-644
    • /
    • 2008
  • In this paper, we prove that the equivalence between the convergence of Mann and Ishikawa iterations for the generalized Lipschitzian and $\Phi$-strongly pseudocontractive mappings in real uniformly smooth Banach spaces. Our results significantly generalize the recent known results of [B. E. Rhoades and S. M. Soltuz, The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitz operators, Int. J. Math. Math. Sci. 42 (2003), 2645.2651].

WEAK AND STRONG CONVERGENCE THEOREMS FOR THE MODIFIED ISHIKAWA ITERATION FOR TWO HYBRID MULTIVALUED MAPPINGS IN HILBERT SPACES

  • Cholamjiak, Watcharaporn;Chutibutr, Natchaphan;Weerakham, Siwanat
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.767-786
    • /
    • 2018
  • In this paper, we introduce new iterative schemes by using the modified Ishikawa iteration for two hybrid multivalued mappings in a Hilbert space. We then obtain weak convergence theorem under suitable conditions. We use CQ and shrinking projection methods with Ishikawa iteration for obtaining strong convergence theorems. Furthermore, we give examples and numerical results for supporting our main results.

ITERATION PROCESSES WITH ERRORS FOR NONLINEAR EQUATIONS INVOLVING $\alpha$-STRONGLY ACCRETIVE OPERATORS IN BANACH SPACES

  • Jung, Jong-Soo
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.349-365
    • /
    • 2001
  • Let X be a real Banach space and $A:X{\rightarrow}2^X$ be an $\alpha$-strongly accretive operator. It is proved that if the duality mapping J of X satisfies Condition (I) with additional conditions, then the Ishikawa and Mann iteration processes with errors converge strongly to the unique solution of operator equation $z{\in}Ax$. In addition, the convergence of the Ishikawa and Mann iteration processes with errors for $\alpha$-strongly pseudo-contractive operators is given.

  • PDF

ISHIKAWA AND MANN ITERATION METHODS FOR STRONGLY ACCRETIVE OPERATORS

  • JONG YEOUL PARK;JAE UG JEONG
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.765-773
    • /
    • 1998
  • Let E be a smooth Banach space. Suppose T : E longrightarrow E is a strongly accretive map. It is proved that each of the two well known fixed point iteration methods (the Mann and Ishikawa iteration methods), under suitable conditions, converges strongly to a solution of the equation Tx = f.

  • PDF

STRONG AND WEAK CONVERGENCE OF THE ISHIKAWA ITERATION METHOD FOR A CLASS OF NONLINEAR EQUATIONS

  • Osilike, M.O.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.153-169
    • /
    • 2000
  • Let E be a real q-uniformly smooth Banach space which admits a weakly sequentially continuous duality map, and K a nonempty closed convex subset of E. Let T : K -> K be a mapping such that $F(T)\;=\;{x\;{\in}\;K\;:\;Tx\;=\;x}\;{\neq}\;0$ and (I - T) satisfies the accretive-type condition: $\;{\geq}\;{\lambda}$\mid$$\mid$x-Tx$\mid$$\mid$^2$, for all $x\;{\in}\;K,\;x^*\;{\in}\;F(T)$ and for some ${\lambda}\;>\;0$. The weak and strong convergence of the Ishikawa iteration method to a fixed point of T are investigated. An application of our results to the approximation of a solution of a certain linear operator equation is also given. Our results extend several important known results from the Mann iteration method to the Ishikawa iteration method. In particular, our results resolve in the affirmative an open problem posed by Naimpally and Singh (J. Math. Anal. Appl. 96 (1983), 437-446).

  • PDF

ISHIKAWA AND MANN ITERATION METHODS FOR STRONGLY ACCRETIVE OPERATORS

  • JAE UG JEONG
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.477-485
    • /
    • 1997
  • Let E be a smooth Banach space. Suppose T:$E \rightarrow E$ is a strongly accretive map. It is proved that each of the two well known fixed point iteration methods (the Mann and ishikawa iteration methods), under suitable conditions converges strongly to a solution of the equation $T_x=f$.

On the Equivalance of Some Fixed Point Iterations

  • Ozdemir, Murat;Akbulut, Sezgin
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.211-217
    • /
    • 2006
  • In this paper, we have shown that the convergence of one-step, two-step and three-step iterations is equivalent, which are known as Mann, Ishikawa and Noor iteration procedures, for a special class of Lipschitzian operators defined in a closed, convex subset of an arbitrary Banach space.

  • PDF

STRONG CONVERGENCE OF MODIFIED ISHIKAWA ITERATION FOR TWO RELATIVELY NONEXPANSIVE MAPPINGS IN A BANACH SPACE

  • Liu, Ying;Wang, Xian;He, Zhen
    • East Asian mathematical journal
    • /
    • v.25 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • In this paper, we prove a strong convergence theorem for a common fixed point of two relatively nonexpansive mappings in a Banach space by using the modified Ishikawa iteration method. Our results improved and extend the corresponding results announced by many others.

ITERATIVE APPROXIMATION OF FIXED POINTS FOR STRONGLY PSEUDO-CONTRACTIVE MAPPINGS

  • Sharma, Sushil;Deshpande, Bhavana
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.43-51
    • /
    • 2002
  • The aim of this paper is to prove a convergence theorem of a generalized Ishikawa iteration sequence for two multi-valued strongly pseudo-contractive mappings by using an approximation method in real uniformly smooth Banach spaces. We generalize and extend the results of Chang and Chang, Cho, Lee, Jung, and Kang.