ITERATION PROCESSES WITH ERRORS FOR NONLINEAR EQUATIONS INVOLVING α-STRONGLY ACCRETIVE OPERATORS IN BANACH SPACES

Jong Soo Jung

Abstract

Let X be a real Banach space and $A \cdot X \rightarrow 2^{X}$ be an α-strongly accretive operator. It is proved that if the duality mapping J of X satisfies Condition (I) with additional conditions, then the Ishikawa and Mann iteration processes with errors converge strongly to the unque solution of operator equation $z \in A x$ In addition, the convergence of the Ishikawa and Mann iteration processes with errors for α-strongly pseudo-contractive operators is given

1. Introduction

Let X be a real Banach space with norm $\|\cdot\|$ whose dual space is denoted by X^{*}. The normalized duality mapping J from X into the family of nonempty subset of X^{*} is defined by

$$
J(x)=\left\{j \in X^{*}:\langle x, j\rangle=\|x\|^{2},\|j\|=\|x\|\right\}
$$

where $\langle\cdot, \cdot\rangle$ denotes the generalized duality pairing. It is an immediate consequence of the Hahn-Banach theorem that $J(x)$ is nonempty for each $x \in X$.

Recerved June 20, 2001 Revised November 19, 2001
2000 Mathematics Subject Classification Primary 47H06, Secondary 47 H 17.
Key words and phrases condition (I), duality mapping, Ishakawa iteration process, Mann iteration process, α-strongly pseudo-contractıve, α-strongly accretıve

This work was supported by Korea Research Foundation Grant (KRF-99-041D00030)

We say that J satisfies Condition (I) if there exists a function Φ : $X \rightarrow[0, \infty)$ such that for $u, v \in X$,

$$
\sup \left\{\left\|j-j^{*}\right\|: j \in J(u), j^{*} \in J(v)\right\} \leq \Phi(u-v)
$$

This concept was introduced by Calvert and Gupta in [4, Definition 1.1]. They actually showed that that if $X=L^{p}(\Omega)$ with Ω a bounded subset of \mathbb{R}^{N}, then the duality mapping

$$
J: L^{p}(\Omega) \rightarrow L^{q}(\Omega), \quad\left(\frac{1}{p}+\frac{1}{q}=1 \text { and } 2 \leq p<\infty\right)
$$

defined by $J(u)=|u|^{p-1} \operatorname{sgn} u\|u\|_{p}^{2-p}$, satisfies Condition (I) as a Lipschizian mapping. In this case, it follows that $\lim _{u \rightarrow 0} \Phi(u)=0$. Condition (I) was also used by Morales [16] and Torrejón [21].

An operator $A: D(A) \subset X \rightarrow 2^{X}$ with domain $D(A)$ and range $R(A)$ is said to be k-accretve ($k \in \mathbb{R}$) if for each $x, y \in D(A)$ there exists $j \in J(x-y)$ such that

$$
\begin{equation*}
\langle u-v, j\rangle \geq k\|x-y\|^{2} \tag{1.1}
\end{equation*}
$$

for all $u \in A x$ and $v \in A y$. For $k>0$ in inequality (1), we say that A is strongly accretive, while for $k=0, A$ is simply called accretive. In addition, if the range of $I+\lambda A$ is precisely X for all $\lambda>0$, then A is said to be m-accretrve. Let $\alpha:[0, \infty) \rightarrow[0, \infty)$ be a function which is continuous and strictly increasing with $\alpha(0)=0$ and $\alpha(r)>0$ for $r>0$. An operator $A: D(A) \subset X \rightarrow 2^{X}$ is called α-strongly accretive if for each $x, y \in D(A)$ there exists $j \in J(x-y)$ such that

$$
\langle u-v, j\rangle \geq \alpha(\|x-y\|)\|x-y\|
$$

for all $u \in A x$ and $v \in A y$.
Along with the family of k-accretive mappings, we find a family of operators intimately related to it which is known as k - p seudo-contractive (see [14]). This latter family is formed by mappings written as $I-A$ where I is the identity and A is k-accretive. In the single-valued case,
an operator T is said to be k-pseudo-contractive if for each $x, y \in D(T)$ there exists $j \in J(x-y)$ such that

$$
\langle T x-T y, j\rangle \leq k\|x-y\|^{2} .
$$

Once again if $k<1, T$ is called strongly pseudo-contractive, while if $k=1, T$ is called p seudo-contractive. We also say that T is α-strongly pseudo-contractive if $I-T$ is α-strongly accretive (see [15], [17]).

Incidentally, these operators were introduced by Browder [2], while the notion of accretive operators was independently introduced by Browder [2] and Kato [10]. In the case $X=H$ is a Hilbert space, one of the earliest problems in the theory of accretive operators was to solve the equation $z=x+A x$ for a given $z \in H$ and A accretive operator (see for instance [$3,8,13]$). In [2], Browder actually proved that if A is locally Lipschitzian and accretive with $D(A)=X$, then A is m-accretive. In particular, for any $z \in X$, the equation $z=x+A x$ has a unique solution. This result was later generalized by Martin [12] to continuous accretive operators and extended by Morales [15] to the multi-valued case, respectively.

Recently, the theory of single (multi)-valued accretive and single (multi)-valued strongly accretive operators in connection with the Ishikawa and Mann iteration process have been studied by many authors in the attempt of approximating fixed points of some nonlinear operator equations in Banach spaces (see [5], [6], [20], [21], [22]). Some further extensions of these iterative methods by adding an error term have also been explored (see [11], [22]).

The main purpose of this paper is to study the convergences of the so-called Ishikawa and Mann iteration processes with errors to approximate the unique solution of the operator equation of the α-strongly accretive operator A under the condition that the duality mapping J satisfies Condition (I). As a consequence of main result, we obtain the convergence of the Ishikawa and Mann iteration processes with errors for α-strongly pseudo-contractive operators. We should mention that since it is not known whether the duality mapping J actually satisfies a global condition like (I) even in Banach spaces with uniformly convex dual spaces, our results may be, in a sense, independent of the previous related results.

2. Preliminaries and Lemmas

We recall the Ishikawa and Mann iteration processes with errors.
Firstly, Liu [11] introduced the iteration processes which he called Ishikawa and Mann iteration processes "with errors" for nonlinear strongly accretive mappings as follows:
(A) For K a nonempty subset of a real Banach space X and a mapping $T: K \rightarrow X$, the sequence $\left\{x_{n}\right\}$ defined by $x_{0} \in K$,

$$
\left\{\begin{aligned}
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n}+u_{n} \\
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n}+v_{n}, \quad n \geq 0,
\end{aligned}\right.
$$

where $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are some real sequences in $[0,1]$ satisfying appropriate conditions $\sum_{n=0}^{\infty}\left\|u_{n}\right\|<\infty, \sum_{n=0}^{\infty}\left\|v_{n}\right\|<\infty$, is called the Ishikawa iteration process with errors.
(B) With K, X and S as in part (A), the sequence $\left\{x_{n}\right\}$ defined by $x_{0} \in K$,

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n}+u_{n}, \quad n \geq 0,
$$

where $\left\{\alpha_{n}\right\}$ and $\left\{u_{n}\right\}$ satisfy conditions as in part (A), is called Mann iteration process with errors.

However, the conditions $\sum_{n=0}^{\infty}\left\|u_{n}\right\|<\infty, \sum_{n=0}^{\infty}\left\|v_{n}\right\|<\infty$ on error terms introduced in (A) and (B) imply that the errors tend to zero and this is incompatible with the randomness of errors. Recently, Xu [21] improved the Ishikawa and Mann iteration processes with errors of Liu [11] under the randomness of errors as follows:
(C) Let K be a nonempty convex subset of X and $T: K \rightarrow K$ a mapping. For any given $x_{0} \in K$, the sequence $\left\{x_{n}\right\}$ defined by

$$
\left\{\begin{aligned}
x_{n+1} & =c_{n} x_{n}+d_{n} T y_{n}+r_{n} u_{n} \\
y_{n} & =c_{n}^{\prime} x_{n}+d_{n}^{\prime} T x_{n}+r_{n}^{\prime} v_{n}, \quad n \geq 0
\end{aligned}\right.
$$

where $\left\{c_{n}\right\},\left\{d_{n}\right\},\left\{r_{n}\right\},\left\{c_{n}^{\prime}\right\},\left\{d_{n}^{\prime}\right\},\left\{r_{n}^{\prime}\right\}$ are some real sequences in $[0,1]$ such that $c_{n}+d_{n}+r_{n}=1=c_{n}^{\prime}+d_{n}^{\prime}+r_{n}^{\prime}$ and $\left\{u_{n}\right\},\left\{v_{n}\right\}$ are
bounded sequences in K for all integers $n \geq 0$, is called the Ishikawa iteration process with errors.
(D) In particular, if $c_{n}^{\prime}=r_{n}^{\prime}=0$ for all $n \geq 0$, the $\left\{x_{n}\right\}$ defined by

$$
x_{0} \in K, \quad x_{n+1}=c_{n} x_{n}+d_{n} T x_{n}+r_{n} u_{n}, \quad n \geq 0
$$

is called Mann ateration process with errors.
But, if the operator T has bounded range and one imposes the condition that $\sum r_{n}<\infty$ and $\sum r_{n}^{\prime}<\infty$, the iteration processes (C) and (D) with $\alpha_{n}:=d_{n}+r_{n}$ and $\beta_{n}:=d_{n}^{\prime}+r_{n}^{\prime}$ reduce the type of processes (A) and (B). So there is no loss of generality in studying the iteration process (A) and (B) instead of the processes (C) and (D).

In the sequel, we need the following lemmas for the proof of our main results. The first lemma is actually Lemma 1 of Petryshyn [19]. Also Asplund [1] proved a general result for single-valued duality mappings, which can be used to derive this lemma.

Lemma 1 Let X be a real Banach space and let J be the normalized duality mapping. Then for any given $x, y \in X$, we have

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j\rangle
$$

for all $j \in J(x+y)$.
Proof. Let $x, y \in X$ and $j \in J(x+y)$. Then

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x+y, j\rangle \\
& =\langle x, j\rangle+\langle y, j\rangle \\
& \leq \frac{1}{2}\left(\|x\|^{2}+\|j\|^{2}\right)+\langle y, j\rangle
\end{aligned}
$$

Therefore

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j\rangle
$$

Lemma 2 ([11]). Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be three nonnegative real sequences satusfying

$$
a_{n+1} \leq\left(1-t_{n}\right) a_{n}+b_{n}+c_{n}, \quad n \geq n_{0},
$$

where n_{0} is some positive integer, $0 \leq t_{n}<1, \sum_{n=0}^{\infty} t_{n}=\infty, b_{n}=$ $o\left(t_{n}\right)$ and $\sum_{n=0}^{\infty} c_{n}<\infty$. Then $\lim _{n \rightarrow \infty} a_{n}=0$.

3. Main results

We now begin with the first main result of this paper.
Theorem 1 Let X be a Banach space whose duality mapping J satisfies Conditzon (I) with a function $\Phi: X \rightarrow[0, \infty)$. Lel $A: X \rightarrow$ 2^{X} be α-strongly accretve. Suppose that the equation $z \in A x$ has a solution for each $z \in X$. Let $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ be two sequences in X and let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be two real sequences in $[0,1]$ satisfying
(i) $\sum_{n=0}^{\infty}\left\|u_{n}\right\|<\infty, \quad \lim _{n \rightarrow \infty}\left\|v_{n}\right\|=0$,
(ii) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ and $\lim _{n \rightarrow \infty} \alpha_{n}=0$,
(iii) $\lim _{n \rightarrow \infty} \beta_{n}=0$.

For an arbutrary initial value of x_{0} in X, let $\left\{x_{n}\right\}$ be the Ishikawa type aterative sequence generated by

$$
\left\{\begin{align*}
x_{n+1} & \in\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left(z+(I-A) y_{n}\right)+u_{n} \tag{3.1}\\
y_{n} & \in\left(1-\beta_{n}\right) x_{n}+\beta_{n}\left(z+(I-A) x_{n}\right)+v_{n}
\end{align*}\right.
$$

in case that there exist bounded selections $\left\{w_{n}\right\}$ and $\left\{z_{n}\right\}$ wnth $w_{n} \in$ $(I-A) y_{n}$ and $z_{n} \in(I-A) x_{n}$. If one of the following conditıons hold:
(1) $\lim _{n \rightarrow \infty}\left\|w_{n}-z_{n+1}\right\|=0$;
(2) $\lim _{n \rightarrow \infty} \Phi\left(p_{n}\right)=0$ for the sequence $\left\{p_{n}\right\}$ with $\lim _{n \rightarrow \infty} p_{n}=0$;
(3) $\sum_{n=0}^{\infty} \alpha_{n} \Phi\left(p_{n}\right)<\infty$ for the sequence $\left\{p_{n}\right\}$ with $\lim _{n \rightarrow \infty} p_{n}=0$, then $\left\{x_{n}\right\}$ converges strongly to the unique solutzon of the equation $z \in A x$.

Proof. Let x^{*} denote the solution of the equation $z \in A x$. The uniqueness of a solution of the equation follows from the α-strong accretivity condition of A. For all $x, y \in X, u \in z+(I-A) x$, and
$v \in z+(I-A) y$, there exist $\bar{u} \in A x, \bar{v} \in A y$ such that $u=z+x-\bar{u}$, $v=z+y-\bar{v}$, and hence, since A is α-strongly accretive, we have

$$
\begin{align*}
\left\langle u-v, j_{x, y}\right\rangle & =\left\langle z+x-\bar{u}-(z+y-\bar{v}), j_{x, y}\right\rangle \\
& \leq\|x-y\|^{2}-\alpha(\|x-y\|)\|x-y\| \tag{3.2}
\end{align*}
$$

where $j_{x, y} \in J(x-y)$.
Now due to the choice of w_{n} and z_{n}, equation (3.2) can be re-written as

$$
\left\{\begin{align*}
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} w_{n}^{\prime}+u_{n} \tag{3.3}\\
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} z_{n}^{\prime}+v_{n}
\end{align*}\right.
$$

for all $n \geq 0$, where $w_{n}^{\prime}=z+w_{n}$ and $z_{n}^{\prime}=z+z_{n}$. Since the sequences $\left\{w_{n}\right\}$ and $\left\{z_{n}\right\}$ are bounded, we may denote by

$$
d=\sup _{n \geq 0}\left\|w_{n}^{\prime}-x^{*}\right\|+\sup _{n \geq 0}\left\|z_{n}^{\prime}-x^{*}\right\|+\left\|x_{0}-x^{*}\right\|
$$

and

$$
M=d+\sum_{n=0}^{\infty}\left\|u_{n}\right\|
$$

This implies that

$$
\begin{aligned}
\left\|x_{1}-x^{*}\right\| & =\left\|\left(1-\alpha_{0}\right)\left(x_{0}-x^{*}\right)+\alpha_{0}\left(w_{0}^{\prime}-x^{*}\right)+u_{0}\right\| \\
& \leq\left(1-\alpha_{0}\right)\left\|x_{0}-x^{*}\right\|+\alpha_{0}\left\|w_{0}^{\prime}-x^{*}\right\|+\left\|u_{0}\right\| \\
& \leq d+\left\|u_{0}\right\| \leq M
\end{aligned}
$$

By induction, we obtain

$$
\left\|x_{n}-x^{*}\right\| \leq M
$$

and

$$
\left\|y_{n}-x^{*}\right\|=\left\|\left(1-\beta_{n}\right)\left(x_{n}-x^{*}\right)+\beta_{n}\left(z_{n}^{\prime}-x^{*}\right)+v_{n}\right\| \leq M+\left\|v_{n}\right\|
$$

for all $n \geq 0$.
(1) Let $\lim _{n \rightarrow \infty}\left\|w_{n}-z_{n+1}\right\|=0$. Then it follows that

$$
\begin{equation*}
r_{n}=\left\|w_{n}^{\prime}-z_{n+1}^{\prime}\right\| \rightarrow 0 \tag{3.4}
\end{equation*}
$$

as $\boldsymbol{n} \rightarrow \infty$. From Lemma 1 and (3.3), we have

$$
\begin{aligned}
& \left\|x_{n+1}-x^{*}\right\|^{2} \\
& =\left\|\left(1-\alpha_{n}\right)\left(x_{n}-x^{*}\right)+\alpha_{n}\left(w_{n}^{\prime}-x^{*}\right)+u_{n}\right\|^{2} \\
& \leq \\
& \leq\left\|\left(1-\alpha_{n}\right)\left(x_{n}-x^{*}\right)\right\|^{2}+2 \alpha_{n}\left\langle w_{n}^{\prime}-x^{*}+u_{n}, j_{x_{n+1}, x^{*}}\right\rangle \\
& \leq \\
& \leq \\
& \leq \\
& \leq \\
& \quad\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\langle w_{n}^{\prime}-x^{*}, j_{x_{n+1}, x^{*}}\right\rangle+2 M\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\langle w_{n}^{\prime}-z_{n+1}^{\prime}, j_{x_{n+1}, x^{*}}-j_{y_{n}, x^{*}}\right\rangle \\
& \quad+2 \alpha_{n}\left\langle w_{n}^{\prime}-z_{n+1}^{\prime}, j_{y_{n}, x^{*}}\right\rangle+2 \alpha_{n}\left\langle z_{n+1}^{\prime}-x^{*}, j_{x_{n+1}, x^{*}}\right\rangle \\
& \quad+2 M\left\|u_{n}\right\| \\
& \leq \\
& \leq \\
& \quad\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\|w_{n}^{\prime}-z_{n+1}^{\prime}\right\| \Phi\left(x_{n+1}-y_{n}\right) \\
& \quad+2 \alpha_{n}\left\|w_{n}^{\prime}-z_{n+1}^{\prime}\right\|\left\|y_{n}-x^{*}\right\|+2 \alpha_{n}\left\|x_{n+1}-x^{*}\right\|^{2} \\
& \quad-2 \alpha_{n} \alpha\left(\left\|x_{n+1}-x^{*}\right\|\right)\left\|x_{n+1}-x^{*}\right\|+2 M\left\|u_{n}\right\| \\
& \leq \\
& \leq \\
& \left.\quad\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|\right|^{2}+2 \alpha_{n}\left\|x_{n+1}-x^{*}\right\|^{2} \\
& \quad-2 \alpha_{n} \alpha\left(\left\|x_{n+1}-x^{*}\right\|\right)\left\|x_{n+1}-x^{*}\right\|+\alpha_{n} r_{n} L+2 M\left\|u_{n}\right\|
\end{aligned}
$$

for all $n \geq 0$, where $\Phi\left(x_{n+1}-y_{n}\right)+M+\left\|v_{n}\right\| \leq L<\infty$. Since $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$, there exists n_{1} such that $1 / 2<1-2 \alpha_{n}<1$ for all $n \geq n_{1}$. It follows from (3.5) that

$$
\begin{align*}
& \left\|x_{n+1}-x^{*}\right\|^{2} \\
& \leq \frac{\left(1-\alpha_{n}\right)^{2}}{1-2 \alpha_{n}}\left\|x_{n}-x^{*}\right\|^{2}+\frac{2 L \alpha_{n} r_{n}}{1-2 \alpha_{n}} \\
& \quad-\frac{2 \alpha_{n}}{1-2 \alpha_{n}} \alpha\left(\left\|x_{n+1}-x^{*}\right\|\right)\left\|x_{n+1}-x^{*}\right\|+\frac{2 M}{1-2 \alpha_{n}}\left\|u_{n}\right\| \tag{3.6}\\
& \leq\left\|x_{n}-x^{*}\right\|^{2}+\frac{\alpha_{n}}{1-2 \alpha_{n}}\left(M^{2} \alpha_{n}+2 L r_{n}\right) \\
& \quad-\frac{2 \alpha_{n}}{1-2 \alpha_{n}} \alpha\left(\left\|x_{n+1}-x^{*}\right\|\right)\left\|x_{n+1}-x^{*}\right\|+\frac{2 M}{1-2 \alpha_{n}}\left\|u_{n}\right\|
\end{align*}
$$

for all $n \geq n_{1}$. Let $\delta=\inf \left\{\left\|x_{n}-x^{*}\right\|: n \geq 0\right\}$. Now we prove that $\delta=0$. Suppose that $\delta>0$. Then $\left\|x_{n}-x^{*}\right\| \geq \delta>0$ for all $n \geq 0$. By the strictly increasing property of α, we have $\alpha\left(\left\|x_{n+1}-x^{*}\right\|\right) \geq \delta>0$ for all $n \geq 0$. Since $M^{2} \alpha_{n}+2 L r_{n} \rightarrow 0$ as $n \rightarrow \infty$, there exists a positive integer $n_{2} \geq n_{1}$ such that

$$
\begin{equation*}
M^{2} \alpha_{n}+2 L r_{n}<\alpha(\delta) \delta \tag{3.7}
\end{equation*}
$$

for all $n \geq n_{2}$. It follows from (3.6) and (3.7) that

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \left\|x_{n}-x^{*}\right\|^{2}+\frac{\alpha_{n}}{1-2 \alpha_{n}} \alpha(\delta) \delta \\
& -\frac{2 \alpha_{n}}{1-2 \alpha_{n}} \alpha(\delta) \delta+4 M\left\|u_{n}\right\| \tag{3.8}\\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-\frac{\alpha_{n}}{1-2 \alpha_{n}} \alpha(\delta) \delta+4 M\left\|u_{n}\right\|
\end{align*}
$$

for all $n \geq 0$. This implies

$$
\begin{equation*}
\alpha(\delta) \delta \sum_{n=n_{2}}^{\infty} \alpha_{n}<\left\|x_{n_{2}}-x^{*}\right\|^{2}+4 M \sum_{n=n_{2}}^{\infty}\left\|u_{n}\right\|<\infty \tag{3.9}
\end{equation*}
$$

which contradicts the assumption that $\sum_{n=0}^{\infty} \alpha_{n}=\infty$. Thus $\delta=0$, and hence there exists a subsequence $\left\{x_{n,}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{j}} \rightarrow 0$ as $j \rightarrow \infty$. Since $\left\{w_{n}^{\prime}\right\}$ is bounded in (3.3), $\alpha_{n} \rightarrow 0$ and $\left\|u_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
x_{n_{3}+1}=\left(1-\alpha_{n_{\jmath}}\right) x_{n_{\jmath}}+\alpha_{n_{\jmath}} w_{n_{\jmath}}^{\prime}+u_{n_{\jmath}} \rightarrow x^{*}
$$

as $j \rightarrow \infty$. By induction, we can prove that

$$
x_{n_{j}+k} \rightarrow x^{*}
$$

as $j \rightarrow \infty$ for all $k=1,2, \cdots$. Therefore we have $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$.
Suppose that condition (2) or (3) holds. In this case, we follow the approaches of Jung and Morales [9]. For the sake of completeness, we
include its proof under the condition (2) (Similarly, we can also derive the same conclusion under the condition (3)).

Define a sequence $\left\{r_{n}\right\}$ by

$$
r_{n}=\left|\left\langle w_{n}^{\prime}-x^{*}, j_{x_{n+1}, x^{*}}-j_{y_{n}, x^{*}}\right\rangle\right|
$$

for $n \geq 0$. Since $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{w_{n}^{\prime}\right\}$ and $\left\{z_{n}^{\prime}\right\}$ are bounded, by (3.3) and the conditions (i) - (iii), we have

$$
x_{n+1}-y_{n}=\left(\beta_{n}-\alpha_{n}\right) x_{n}+\alpha_{n} w_{n}^{\prime}-\beta_{n}^{\prime}+u_{n}-v_{n} \rightarrow 0
$$

as $n \rightarrow \infty$. By Condition (I) of the duality mapping J with a function Φ satisfying the condition (2), we have

$$
\begin{array}{rlr}
r_{n} & =\left|\left\langle w_{n}^{\prime}-x^{*}, j_{x_{n+1}, x^{*}}-j_{y_{n}, x^{*}}\right\rangle\right| \\
& \leq\left\|w_{n}^{\prime}-x^{*}\right\| \sup \left\{\left\|j_{x_{n+1}, x^{*}}-j_{y_{n}, x^{*}}\right\|: j_{x_{n+1}, x^{*}} \in J\left(x_{n+1}-x^{*}\right),\right. \\
& \leq M \Phi\left(x_{n+1}-y_{n}\right) \rightarrow 0 & \left.j_{y_{n}, x^{*}} \in J\left(y_{n}-x^{*}\right)\right\}
\end{array}
$$

as $n \rightarrow \infty$. On the other hand, using Lemma 1 and (3.3), we have

$$
\begin{align*}
& \left\|y_{n}-x^{*}\right\|^{2} \\
& =\left\|\left(1-\beta_{n}\right) x_{n}+\beta_{n} z_{n}^{\prime}+v_{n}-x^{*}\right\|^{2} \\
& \leq\left(1-\beta_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \beta_{n}\left(z_{n}^{\prime}-x^{*}, j_{y_{n}, x^{*}}\right\rangle+2\left\langle v_{n}, j_{y_{n}, x^{*}}\right\rangle \tag{3.10}\\
& \leq\left(1-\beta_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2\left(\beta_{n}\left\|z_{n}^{\prime}-x^{*}\right\|+\left\|v_{n}\right\|\right)\left\|y_{n}-x^{*}\right\| \\
& \leq\left\|x_{n}-x^{*}\right\|^{2}+2\left(\beta_{n} M+\left\|v_{n}\right\|\right)\left(M+\left\|v_{n}\right\|\right)
\end{align*}
$$

for all $n \geq 0$. We also have

$$
\begin{align*}
& \left\|x_{n+1}-x^{*}\right\|^{2} \\
& =\left\|\left(1-\alpha_{n}\right)\left(x_{n}-x^{*}\right)+\alpha_{n}\left(w_{n}^{\prime}-x^{*}\right)+u_{n}\right\|^{2} \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\langle w_{n}^{\prime}-x^{*}, j_{x_{n+1}, x^{*}}\right\rangle \tag{3.11}\\
& \quad+2\left\langle u_{n}, j_{x_{n+1}, x^{*}}\right\rangle \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\langle w_{n}^{\prime}-x^{*}, j_{y_{n}, x^{*}}\right\rangle \\
& \quad+2 \alpha_{n}\left\langle w_{n}^{\prime}-x^{*}, j_{x_{n+1}, x^{*}}-j_{y_{n}, x^{*}}\right\rangle+2\left\|u_{n}\right\| M
\end{align*}
$$

for all $n \geq 0$, where $j_{x_{n+1}, x^{*}} \in J\left(x_{n+1}-x^{*}\right)$ and $j_{y_{n}, x^{*}} \in J\left(y_{n}-x^{*}\right)$. Thus, using (3.2), (3.3), (3.10) and (3.11), we obtain

$$
\begin{align*}
& \left\|x_{n+1}-x^{*}\right\|^{2} \\
& \leq \\
& \quad\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2} \\
& \quad+2 \alpha_{n}\left(\left\|y_{n}-x^{*}\right\|^{2}-\alpha\left(\left\|y_{n}-x^{*}\right\|\right)\left\|y_{n}-x^{*}\right\|\right) \tag{3.12}\\
& \quad+2 \alpha_{n} r_{n}+2\left\|u_{n}\right\| M \\
& \leq \\
& \quad\left(1+\alpha_{n}^{2}\right)\left\|x_{n}-x^{*}\right\|^{2}-2 \alpha_{n} \frac{\alpha\left(\left\|y_{n}-x^{*}\right\|\right)}{\left\|y_{n}-x^{*}\right\|}\left\|x_{n}-x^{*}\right\|^{2} \\
& \quad+4 \alpha_{n}\left(\beta_{n} M+\left\|v_{n}\right\|\right)\left(M+\left\|u_{n}\right\|\right)+2 \alpha_{n} r_{n}+2\left\|u_{n}\right\| M
\end{align*}
$$

for all $n \geq 0$.
If $\inf _{n \geq 0}\left\|y_{n}-x^{*}\right\|>0$, then there exists $k>0$ such that

$$
k<\frac{\alpha\left(\left\|y_{n}-x^{*}\right\|\right)}{\left\|y_{n}-x^{*}\right\|}
$$

for all $n \geq 0$. Hence we have from (3.12)

$$
\begin{aligned}
& \left\|x_{n+1}-x^{*}\right\|^{2} \\
& \leq\left(1+\alpha_{n}^{2}-2 k \alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}+4 \alpha_{n}\left(\beta_{n} M+\left\|v_{n}\right\|\right)\left(M+\left\|v_{n}\right\|\right) \\
& \quad+2 \alpha_{n} r_{n}+2\left\|u_{n}\right\| M
\end{aligned}
$$

for all $n \geq 0$. Since $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$ by (ii), there exists a positive integer n_{0} such that $\alpha_{n}-k \leq 0$ and so $\alpha_{n}^{2} \leq k \alpha_{n}$ for all $n \geq n_{0}$. Thus we obtain

$$
\begin{equation*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq\left(1-k \alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}+b_{n}+c_{n} \tag{3.13}
\end{equation*}
$$

for all $n \geq n_{0}$, where $b_{n}=\alpha_{n}\left[4\left(\beta_{n} M+\left\|v_{n}\right\|\right)\left(M+\left\|v_{n}\right\|\right)+2 r_{n}\right]$ and $c_{n}=2\left\|u_{n}\right\| M$. Let $a_{n}=\left\|x_{n}-x^{*}\right\|^{2}, t_{n}=k \alpha_{n}$. Then the inequality (3.13) reduces to

$$
a_{n+1} \leq\left(1-t_{n}\right) a_{n}+b_{n}+c_{n}
$$

for all $n \geq n_{0}$. By the conditions (i) - (iii), it is easy to see that $\sum_{n=0}^{\infty} t_{n}=\infty, b_{n}=o\left(t_{n}\right)$, and $\sum_{n=0}^{\infty} c_{n}<\infty$. It follows from Lemma 2 that $\left\{x_{n}\right\}$ converges strongly to x^{*} as $n \rightarrow \infty$.

Suppose now that $\inf _{n \geq 0}\left\|y_{n}-x^{*}\right\|=0$. Then there exists a subsequence $\left\{y_{n_{j}}\right\}$ of $\left\{y_{n}\right\}$ such that $\lim _{j \rightarrow \infty}\left\|y_{n_{j}}-x^{*}\right\|=0$. For a given $\varepsilon>0$ we may choose a positive integer j_{0} such that
$\left\|x_{j_{0}}-x^{*}\right\|<\frac{\varepsilon}{\sqrt{2}}, \quad\left\|x_{j_{0}+1}-y_{j_{0}}\right\|<\frac{\varepsilon}{2}, \quad s_{j}<\varepsilon \alpha\left(\frac{\varepsilon}{2}\right)$ and $\quad\left\|u_{j}\right\|<\frac{\varepsilon^{2}}{4 M}$ for all $j \geq j_{0}$, where $s_{j}=\alpha_{j} M^{2}+4\left(\beta_{j}+\left\|v_{j}\right\|\right)\left(M+\left\|v_{j}\right\|\right)+2 r_{j}$. Suppose that $\left\|x_{\jmath 0+1}-x^{*}\right\| \geq \varepsilon$. Then

$$
\begin{aligned}
\left\|y_{j 0}-x^{*}\right\| & \geq\left\|x_{j_{0}+1}-x^{*}\right\|-\left\|x_{j_{0}+1}-y_{j_{0}}\right\| \\
& >\varepsilon-\frac{\varepsilon}{2}=\frac{\varepsilon}{2}
\end{aligned}
$$

and so

$$
\alpha\left(\left\|y_{j \mathrm{j}}-x^{*}\right\|\right)\left\|y_{j 0}-x^{*}\right\|>\alpha\left(\frac{\varepsilon}{2}\right) \frac{\varepsilon}{2}
$$

Since we can also derive

$$
\begin{aligned}
& \left\|x_{n+1}-x^{*}\right\|^{2} \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\|y_{n}-x^{*}\right\|^{2} \\
& \quad-2 \alpha_{n} \alpha\left(\left\|y_{n}-x^{*}\right\|\right)\left\|y_{n}-x^{*}\right\|+2 \alpha_{n} r_{n}+2\left\|u_{n}\right\| M \\
& =\left(1+\alpha_{n}^{2}\right)\left\|x_{n}-x^{*}\right\|^{2}-2 \alpha_{n} \alpha\left(\left\|y_{n}-x^{*}\right\|\right)\left\|y_{n}-x^{*}\right\| \\
& \quad+4 \alpha_{n}\left(\beta_{n} M+\left\|v_{n}\right\|\right)\left(M+\left\|v_{n}\right\|\right)+2 \alpha_{n} r_{n}+2\left\|u_{n}\right\| M \\
& \leq\left\|x_{n}-\dot{x}^{*}\right\|^{2}-2 \alpha_{n} \alpha\left(\left\|y_{n}-x^{*}\right\|\right)\left\|y_{n}-x^{*}\right\| \\
& \quad+\alpha_{n}\left[\alpha_{n} M^{2}+4\left(\beta_{n} M+\left\|v_{n}\right\|\right)\left(M+\left\|v_{n}\right\|\right)+2 r_{n}\right]+2\left\|u_{n}\right\| M
\end{aligned}
$$

for all $n \geq 0$, it follows that

$$
\begin{aligned}
& \| x_{j 0}+1 \\
& \leq\left\|x_{j 0}-x^{*}\right\|^{2}-2 \alpha_{j_{0}} \alpha\left(\left\|y_{j 0}-x^{*}\right\|\right)\left\|y_{j_{0}}-x^{*}\right\|+\alpha_{j_{0}} s_{j 0}+2\left\|u_{j_{0}}\right\| M \\
& <\frac{\varepsilon^{2}}{2}-2 \alpha_{j 0} \alpha\left(\frac{\varepsilon}{2}\right) \frac{\varepsilon}{2}+\alpha_{j 0} \varepsilon \alpha\left(\frac{\varepsilon}{2}\right)+\frac{\varepsilon^{2}}{2}=\varepsilon^{2}
\end{aligned}
$$

which is a contradiction. Therefore $\left\|x_{J_{0}+1}-x^{*}\right\|<\varepsilon$ and inductively we have

$$
\left\|x_{n}-x^{*}\right\|<\varepsilon
$$

for all $n \geq j_{0}$. Therefore the sequence $\left\{x_{n}\right\}$ converges strongly to the unique solution of the equation $z \in A x$.

Corollary 1. Let X, A, J and Φ be as in Theorem 1. Suppose that the equation $z \in A x$ has a solution for each $z \in X$. Let $\left\{u_{n}\right\}$ be in sequences in X and $\left\{\alpha_{n}\right\}$ be sequences in $[0,1]$ satisfying the conditions (i) and (ii). For an arbitrary initial value of x_{0} in X, let $\left\{x_{n}\right\}$ be the Mann type aterative sequence generated by

$$
x_{n+1} \in\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left(z+(I-\Lambda) x_{n}\right)+u_{n}
$$

in case that there exists a bounded selection $\left\{w_{n}\right\}$ with $w_{n} \in(I-A) x_{n}$. If one of the following condutuons hold:
(1) $\lim _{n \rightarrow \infty}\left\|w_{n}-w_{n+1}\right\|=0$;
(2) $\lim _{n \rightarrow \infty} \Phi\left(p_{n}\right)=0$ for the sequence $\left\{p_{n}\right\}$ with $\lim _{n \rightarrow \infty} p_{n}=0$;
(3) $\sum_{n=0}^{\infty} \alpha_{n} \Phi\left(p_{n}\right)<\infty$ for the sequence $\left\{p_{n}\right\}$ with $\lim _{n \rightarrow \infty} p_{n}=0$, then $\left\{x_{n}\right\}$ converges strongly to the untque solution of the equation $z \in A x$.

REMARK 1 If $A: X \rightarrow X$ is a continuous strongly accretive operator, then the existence of a solution of the equation $z=A z$ follows from Martin [11] (see also Morales [14]). Hence we can establish the corresponding results from Theorem 1 and Corollary 1 with $\alpha(t)=k t$ for $k>0$.

Now we give the convergence of Ishikawa iterative sequence for α strongly pseudo-contractive operator.

Theorem 2 Let X be a Banach space whose dualty mapping J satzsfies Condition (I) with a functzon $\Phi: X \rightarrow[0, \infty)$. Let $T: X \rightarrow$ 2^{X} be α-strongly pseudo-contractive with a fixed point x^{*} in X. Let $\left\{u_{n}\right\},\left\{v_{n}\right\}$ be in sequences in X and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ be sequences in $[0,1]$ satisfyzng the conditions (i) - (iii). For an arbutrary untial value of x_{0} in X, let $\left\{x_{n}\right\}$ be the Ishıkawa type iterative sequence generated by

$$
\left\{\begin{array}{r}
x_{n+1} \in\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n}+u_{n} \tag{3.14}\\
y_{n} \in\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n}+v_{n},
\end{array}\right.
$$

in case that there exnst bounded selections $\left\{w_{n}\right\}$ and $\left\{z_{n}\right\}$ with $w_{n} \in$ $T y_{n}$ and $z_{n} \in T x_{n}$. If one of the following conditions hold:
(1) $\lim _{n \rightarrow \infty}\left\|w_{n}-z_{n+1}\right\|=0$;
(2) $\lim _{n \rightarrow \infty} \Phi\left(p_{n}\right)=0$ for the sequence $\left\{p_{n}\right\}$ with $\lim _{n \rightarrow \infty} p_{n}=0$;
(3) $\sum_{n=0}^{\infty} \alpha_{n} \Phi\left(p_{n}\right)<\infty$ for the sequence $\left\{p_{n}\right\}$ with $\lim _{n \rightarrow \infty} p_{n}=0$, then $\left\{x_{n}\right\}$ converges strongly to the unique fixed point of T.

Proof The uniqueness of fixed point of T follows from α-strong pseudo-contractivity condition of T. For any $x, y \in X, u \in T x, v \in T y$ there exist $\bar{u} \in(I-T) x, \bar{v} \in(I-T) y$ such that $\bar{u}=x-u, \bar{v}=y-v$. Since $(I-T)$ is α-strongly accretive, we have

$$
\begin{aligned}
\left\langle u-v, j_{x, y}\right\rangle & =\left\langle x-\bar{u}-(y-\bar{v}), j_{x, y}\right\rangle \\
& \leq\|x-y\|^{2}-\alpha(\|x-y\|)\|x-y\|,
\end{aligned}
$$

where $j_{x, y} \in J(x-y)$. As in proof of Theorem 1, due to the choice of w_{n} and z_{n}, equation (3.14) can be re-written as

$$
\left\{\begin{aligned}
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} w_{n}+u_{n} \\
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} z_{n}+v_{n}
\end{aligned}\right.
$$

for all $n \geq 0$. We can also denote by

$$
d=\sup _{n \geq 0}\left\|w_{n}-x^{*}\right\|+\sup _{n \geq 0}\left\|z_{n}-x^{*}\right\|+\left\|x_{0}-x^{*}\right\|
$$

and

$$
M=d+\sum_{n=0}^{\infty}\left\|u_{n}\right\|
$$

Now the result follows exactly as in the proof of Theorem 1. This completes the proof.

Corollary 2 Let X, T, J and Φ be as in Theorem 2. Let $\left\{u_{n}\right\}$ be in sequences in X and $\left\{\alpha_{n}\right\}$ be sequences in $[0,1]$ satisfying the conditıons (i) and (ii). For an arbitrary inttial value x_{0} in X, let $\left\{x_{n}\right\}$ be the Mann type iterative sequence generated by

$$
x_{n+1} \in\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n}+u_{n}
$$

in case that there exist a bounded selection $\left\{w_{n}\right\}$ with $w_{n} \in T x_{n}$. If one of the followng condations hold:
(1) $\lim _{n \rightarrow \infty}\left\|w_{n}-w_{n+1}\right\|=0$;
(2) $\lim _{n \rightarrow \infty} \Phi\left(p_{n}\right)=0$ for the sequence $\left\{p_{n}\right\}$ with $\lim _{n \rightarrow \infty} p_{n}=0$;
(3) $\sum_{n=0}^{\infty} \alpha_{n} \Phi\left(p_{n}\right)<\infty$ for the sequence $\left\{p_{n}\right\}$ with $\lim _{n \rightarrow \infty} p_{n}=0$, then $\left\{x_{n}\right\}$ converges strongly to the unique fixed point of T.

REMARK 2 In case that $T: X \rightarrow X$ is a continuous strongly pseudo-contractive operator, the existence of a fixed point of T follows from Deimling [7]. Hence we can also derive the corresponding results from Theorem 2 and Corollary 2 with $\alpha(t)=r t$ for $r \in(0,1)$.

REMARK 3 (i) In contrast to the previous results ([9], [11], [18], $[22],[23],[24]$), we do not assume that the underlying space X is uniformly smooth. In fact, since it is not known whether the duality mapping J actually satisfies a condition like (I) and the the condition (2) can be replaced by $\Phi\left(u_{n}\right)=\lambda\left\|u_{n}\right\|$ for some $\lambda>0$ even in uniformly smooth Banach spaces, our results may be independent of the previous related results.
(ii) If $A: X \rightarrow C B(X)$ is a uniformly continuous α-strongly accretive operator in Theorem 1, then we can obtain the condition (1), where $C B(X)$ is the family of all bounded closed subsets of X.
(iii) Along with the additional conditions $\sum_{n=0}^{\infty} \alpha_{n} \beta_{n}<\infty$ and $\sum_{n=0}^{\infty} \alpha_{n}^{2}<\infty$ in Theorem 1 and 2 , using Lemma 1 in [20], we can obtain the same conclusions under only the condition (3).

References

[1] E Asplund, Posttivity of duality mappings, Bull Amer. Math Soc. 73 (1967), 200-203
[2] F.E Browder, Nonlunear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer Math Soc. 73 (1967), 875-882
[3] R E Bruck Jr, The iterative solution of the equatuon $y \in x+T x$ for a monotone operator T in Hulbert space, Bull Amer Math Soc 79 (1973), 1258-1261
[4] B D Calvert and C.P Gupta, Nonlinear elliptic boundary value problem in L^{p}-spaces and sums of ranges of accretive operators, Nonlmear Anal 2 (1978), 1-26
[5] S S Chang, Y J. Cho, B S Lee, J S Jung and S M. Kang, Iteratzve approximatzons of ficed points and solutions for strongly accretzve and strongly pseudocontractive mappings in Banach spaces, J Math. Anal Appl 224 (1998), 149-165
[6] C E Chidume, Global ateration schemes for strongly pseudo-contractive maps, Proc. Amer Math Soc. 126 (1998), 2641-2649
[7] K Deimling, Zenos of accretive operators, Manuscript Math. 13 (1974), 365374
[8] W G Doston, An iterative process for nonlinear monotone nonexpansive openators in Hulbert space, Math Comp 32 (1978), 223-225.
[9] J S. Jung and C H. Morales, The Mann process for perturbed m-accretvve operators in Banach spaces, Nonlinear Anal 46 (2001), 231-243
[10] T Kato, Nonltnear semvgroups and evolution equations, J Math. Soc. Japan 19 (1967), $508-520$
[11] L S Liu, Ishikawa and Mann terative process with ergors for nonlinear strongly accretive mappangs in Banach spaces, J Math Anal. Appl 194 (1995), 114125.
[12] R H Martin, Jr, A global exustence theorem for autonomous differential equations in Banach spaces, Proc Amer. Math Soc 26 (1970), 307-314
[13] G.J. Minty, Monotone (nonhnear) openators an Hulbert spaces, Duke Math J 29 (1962), 341-346
[14] C Morales, Pseudo-contractive mappings and the Leray-Schauder boundary condition, Comment. Math Univ Carolin 20 (1979), 745-756
[15] C Morales, Surjectivity theorems for multr-valued mappings of accretive type, Comment Math Univ Carolin 26 (1985), 397-413.
[16] C. Morales, On the range of sums of accretive of continuous operators in Banach spaces, Nonlinear Anal. 19 (1992), 1-9
[17] C Morales and C Chidume, Convergence of the steepest descent method for accretwe operators, m press, Proc Amer Math. Soc
[18] M O Osilike, Iterative solution of nonlinear equations of the $\boldsymbol{\Phi}$-strongly accretive type, J Math Anal Appl 200 (1996), 259-271
[19] W V Petryshyn, A characterization of structly convexity of Banach spaces and other uses of duality mappings, J Funct. Anal 6 (1970), 282-291
[20] K K Tan and H K Xu, Approximating fixed points of nonexpansvve mappings by the Ishikawe ateration process, J Math. Anal Appl 178 (1993), 301-308
[21] R M Torrej ón, Remarks on nonlınear functzonal equatoons, Nonhmear Anal 6 (1982), 197-207
\{22 Y Xu, Ishukawa and Mann ateratzve processes with errors for nonlunear strongly accretwe operator equations, J. Math Anal. Appl 224 (1998), 91-101
[23] L C Zeng, Itemative approximation of solutions to nonlunear equatzons of strongly accretwe operators in Banach spaces, Nonlinear Anal 31 (1998), 589598
[24] H Zhou, Iterative solution of nonhnear equation involving strongly accretzve operators without the Lipschitz assumption, J Math. Anal Appl 213 (1997). 296-307

Department of Mathemailics
Dong-A University
Busan 604-714, Korea
E-mall: jungs@mail.donga.ac.kr

